Acta Optica Sinica, Volume. 39, Issue 7, 0715003(2019)

Image Super Resolution Based on Depth Jumping Cascade

Kunpeng Yuan* and Zhihong Xi
Author Affiliations
  • College of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
  • show less
    References(24)

    [4] Bätz M, Eichenseer A, Seiler J. et al. Hybrid super-resolution combining example-based single-image and interpolation-based multi-image reconstruction approaches. [C]//2015 IEEE International Conference on Image Processing (ICIP), September 27-30, 2015, Quebec City, QC, Canada. New York: IEEE, 58-62(2015).

    [10] Chang H, Yeung D Y, Xiong Y M. Super-resolution through neighbor embedding. [C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 27-July 2, 2004, Washington D C, USA. New York: IEEE, 1315043(2004).

    [13] Dong C, Chen C L, Tang X. Accelerating the super-resolution convolutional neural network[M]. //Leibe B, Matas J, Sebe N, et al. Lecture notes in computer science. Cham: Springer, 9906, 391-407(2016).

    [14] Shi W Z, Caballero J, Huszár F. et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 1874-1883(2016).

    [15] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks. [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 1646-1654(2016).

    [16] He K M, Zhang X Y, Ren S Q. et al. Deep residual learning for image recognition. [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 770-778(2016).

    [17] Huang G, Sun Y, Liu Z. et al. Deep networks with stochastic depth[M]. //Leibe B, Matas J, Sebe N, et al. Lecture notes in computer science. Cham: Springer, 9908, 646-661(2016).

    [18] Huang G, Liu Z. Maaten L V D, et al. Densely connected convolutional networks. [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 2261-2269(2017).

    [22] Timofte R, de Smet V, van Gool L. A+: adjusted anchored neighborhood regression for fast super-resolution[M]. //Cremers D, Reid I, Saito H, et al. Lecture notes in computer science, Cham: Springer, 9006, 111-126(2014).

    [23] Martin D, Fowlkes C, Tal D. et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. [C]//Proceedings Eighth IEEE International Conference on Computer Vision, July 7-14, 2001, Vancouver, BC, Canada. New York: IEEE, 416-423(2001).

    Tools

    Get Citation

    Copy Citation Text

    Kunpeng Yuan, Zhihong Xi. Image Super Resolution Based on Depth Jumping Cascade[J]. Acta Optica Sinica, 2019, 39(7): 0715003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jan. 8, 2019

    Accepted: Mar. 22, 2019

    Published Online: Jul. 16, 2019

    The Author Email: Yuan Kunpeng (xizhihong@hrbeu.edu.cn)

    DOI:10.3788/AOS201939.0715003

    Topics