Acta Optica Sinica, Volume. 39, Issue 10, 1028002(2019)
Hyperspectral Image Classification Algorithm Based on Two-Channel Generative Adversarial Network
Fig. 7. Salinas dataset. (a) Pseudo color composite map; (b) feature reference map
Fig. 8. Classification results of the eight algorithms on the Salinas dataset. (a) Real feature reference map; (b) 1D-CNN; (c) 1D-GAN; (d) HS-1D-GAN; (e) 2D-CNN; (f) HS-2D-GAN; (g) 3D-CNN; (h) 3D-GAN; (i) HS-TC-GAN
Fig. 9. Indian pines dataset.(a) Pseudo color composite map; (b) feature reference map
Fig. 10. Classification results of the eight algorithms on the Indian pines dataset. (a) Real feature reference map; (b) 1D-CNN; (c) 1D-GAN; (d) HS-1D-GAN; (e) 2D-CNN; (f) HS-2D-GAN; (g) 3D-CNN; (h) 3D-GAN; (i) HS-TC-GAN
|
|
|
|
|
|
Get Citation
Copy Citation Text
Xiaojun Bi, Zeyu Zhou. Hyperspectral Image Classification Algorithm Based on Two-Channel Generative Adversarial Network[J]. Acta Optica Sinica, 2019, 39(10): 1028002
Category: Remote Sensing and Sensors
Received: Feb. 22, 2019
Accepted: Jun. 21, 2019
Published Online: Oct. 17, 2019
The Author Email: Zhou Zeyu (zhouzeyu100@hrbeu.edu.cn)