Acta Optica Sinica, Volume. 39, Issue 10, 1028002(2019)

Hyperspectral Image Classification Algorithm Based on Two-Channel Generative Adversarial Network

Xiaojun Bi1 and Zeyu Zhou2、*
Author Affiliations
  • 1 Department of Information Engineering, Minzu University of China, Beijing 100081, China
  • 2 College of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
  • show less
    Figures & Tables(16)
    GAN framework structure
    Structural diagram of DCGAN on LSUN dataset
    GAN classification framework of hyperspectral image
    Improved one-dimensional GAN classification structure
    Improved two-dimensional GAN classification structure
    Two-channel GAN classification structure
    Salinas dataset. (a) Pseudo color composite map; (b) feature reference map
    Classification results of the eight algorithms on the Salinas dataset. (a) Real feature reference map; (b) 1D-CNN; (c) 1D-GAN; (d) HS-1D-GAN; (e) 2D-CNN; (f) HS-2D-GAN; (g) 3D-CNN; (h) 3D-GAN; (i) HS-TC-GAN
    Indian pines dataset.(a) Pseudo color composite map; (b) feature reference map
    Classification results of the eight algorithms on the Indian pines dataset. (a) Real feature reference map; (b) 1D-CNN; (c) 1D-GAN; (d) HS-1D-GAN; (e) 2D-CNN; (f) HS-2D-GAN; (g) 3D-CNN; (h) 3D-GAN; (i) HS-TC-GAN
    • Table 1. Improved one-dimensional GAN classification framework

      View table

      Table 1. Improved one-dimensional GAN classification framework

      NetworksLayerOperationKernel sizeBNStridePaddingActivation function
      Generator1Deconv1×1×1024No10ReLU
      2Deconv1×1×128×aYes10ReLU
      3Reshape-No--No
      4Deconv4×1×256Yes21ReLU
      5Deconv4×1×64Yes21ReLU
      6Deconv1×1×1No10Tanh
      7FullnncNo--No
      Discriminator1Conv3×1×32No11LeakyReLU
      2
      Conv3×1×64No10LeakyReLU
      3
      Conv3×1×128No21LeakyReLU
      4
      Conv3×1×256No10LeakyReLU
      5
      Conv3×1×128No10LeakyReLU
      6
      Conv3×1×32No21LeakyReLU
      7
      Reshape-No--No
      8
      Conv1×1×1024No10No
      9
      Softmax1024×nnclassNo--No
      Sigmoid1024×2No--No
    • Table 2. Improved two-dimensional GAN classification framework

      View table

      Table 2. Improved two-dimensional GAN classification framework

      NetworksLayerOperationKernel sizeBNStridePaddingActivation function
      Generator1Deconv1×1×1024No10ReLU
      2Reshape-No--No
      3Deconv4×4×128Yes21ReLU
      4Deconv4×4×256Yes21ReLU
      5Deconv4×4×128Yes21ReLU
      6Deconv4×4×3No21Tanh
      Discriminator1Conv3×3×32No21LeakyReLU
      2Conv3×3×64No21LeakyReLU
      3Conv3×3×128No21LeakyReLU
      4Conv3×3×64No21LeakyReLU
      5Reshape-No--No
      6Conv1×1×1024No10No
      7Softmax1024×nnclassNo--No
      Sigmoid1024×2No--No
    • Table 3. [in Chinese]

      View table

      Table 3. [in Chinese]

      No.ColorClassSample number
      1Brocoli_green_weeds_11977
      2Brocoli_green_weeds_23726
      3Fallow1976
      4Fallow_rough_plow1394
      5Fallow_smooth2678
      6Stubble3959
      7Celery3579
      8Grapes_untrained11213
      9Soil_vinyard_develop6197
      10Corn_senesced_green_weeds3249
      11Lettuce_romaine_4wk1058
      12Lettuce_romaine_5wk1908
      13Lettuce_romaine_6wk909
      14Lettuce_romaine_7wk1061
      15Vinyard_untrained7164
      16Vinyard_vertical_trellis1737
      Total53785
    • Table 4. Comparison of classification performances of eight algorithms on Salinas dataset

      View table

      Table 4. Comparison of classification performances of eight algorithms on Salinas dataset

      Index1D-CNN1D-GANHS-1D-GAN2D-CNNHS-2D-GAN3D-CNN3D-GANHS-TC-GAN
      OA /%86.1286.8890.2287.8497.1592.0493.3899.67
      AA /%89.6392.2494.0589.8696.9694.5495.2099.45
      Kappa /%84.4885.3989.1086.4496.8291.1392.6399.63
      Train time /s8.9619.67120.9994.61195.60211.90350.49385.27
      Test time /s0.510.542.873.952.434.003.485.11
      Total time /s9.4720.21123.8698.56198.03215.90353.97390.38
    • Table 5. [in Chinese]

      View table

      Table 5. [in Chinese]

      No.ColorClassSample number
      1Alfalfa46
      2Corn-notill1428
      3Corn-min830
      4Corn237
      5Grass-pasture483
      6Grass-trees730
      7Grass-pasture-mowed28
      8Hay-windrowed478
      9Oats20
      10Soybean-notill972
      11Soybean-mintill2455
      12Soybean-clean593
      13Wheat205
      14Woods1265
      15Buildings-Grass-Trees386
      16Stone-Steel-Towers93
      Total10249
    • Table 6. Comparison of classification performances of eight algorithms on Indian pines dataset

      View table

      Table 6. Comparison of classification performances of eight algorithms on Indian pines dataset

      Index1D-CNN1D-GANHS-1D-GAN2D-CNNHS-2D-GAN3D-CNN3D-GANHS-TC-GAN
      OA /%62.5563.9268.9092.3894.3692.5093.3499.74
      AA /%53.2955.9460.2884.8791.1289.7886.8097.52
      Kappa /%56.5158.4164.2991.2993.5791.4492.3999.70
      Train time /s9.0619.46122.0692.36194.33201.48333.63386.05
      Test time /s0.130.131.960.840.550.930.722.07
      Total time /s9.1919.59124.0293.20194.88202.41334.39388.12
    Tools

    Get Citation

    Copy Citation Text

    Xiaojun Bi, Zeyu Zhou. Hyperspectral Image Classification Algorithm Based on Two-Channel Generative Adversarial Network[J]. Acta Optica Sinica, 2019, 39(10): 1028002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Feb. 22, 2019

    Accepted: Jun. 21, 2019

    Published Online: Oct. 17, 2019

    The Author Email: Zhou Zeyu (zhouzeyu100@hrbeu.edu.cn)

    DOI:10.3788/AOS201939.1028002

    Topics