Chinese Optics Letters, Volume. 20, Issue 5, 050502(2022)
Machine-learning-based high-speed lensless large-field holographic projection using double-sampling Fresnel diffraction method
[1] T. Zhan, K. Yin, J. Xiong, Z. He, S. T. Wu. Augmented reality and virtual reality displays: perspectives and challenges. iScience, 23, 101397(2020).
[2] K. Yin, Z. He, J. Xiong, J. Zou, K. Li, S.-T. Wu. Virtual reality and augmented reality displays: advances and future perspectives. J. Phys. Photonics, 3, 022010(2021).
[3] B. C. Kress, P. Schelkens. Optical waveguide combiners for AR headsets: features and limitations. Proc. SPIE, 11062, 110620J(2019).
[4] C. Chang, K. Bang, G. Wetzstein, B. Lee, L. Gao. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica, 7, 1563(2020).
[5] A. Maimone, A. Georgiou, J. S. Kollin. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph., 36, 85(2017).
[6] P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, Z. Zheng. Holographic near-eye display system based on double-convergence light Gerchberg–Saxton algorithm. Opt. Express, 26, 10140(2018).
[7] Y. Peng, S. Choi, N. Padmanaban, G. Wetzstein. Neural holography with camera-in-the-loop training. ACM Trans. Graph., 39, 185(2020).
[8] J. Wu, K. Liu, X. Sui, L. Cao. High-speed computer-generated holography using an autoencoder-based deep neural network. Opt. Lett., 46, 2908(2021).
[9] R. Horisaki, R. Takagi, J. Tanida. Deep-learning-generated holography. Appl. Opt., 57, 3859(2018).
[10] Y. Zhao, L. Cao, H. Zhang, D. Kong, G. Jin. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt. Express, 23, 25440(2015).
[11] Z. He, X. Sui, G. Jin, L. Cao. Progress in virtual reality and augmented reality based on holographic display. Appl. Opt., 58, A74(2019).
[12] S. J. Liu, D. Xiao, X. W. Li, Q. H. Wang. Computer-generated hologram generation method to increase the field of view of the reconstructed image. Appl. Opt., 57, A86(2018).
[13] F. Yaras, H. Kang, L. Onural. Circular holographic video display system. Opt. Express, 19, 9147(2011).
[14] R. Kang, J. Liu, G. Xue, X. Li, D. Pi, Y. Wang. Curved multiplexing computer-generated hologram for 3D holographic display. Opt. Express, 27, 14369(2019).
[15] S. J. Liu, N. T. Ma, F. X. Zhai, N. N. Liu, P. P. Li, Y. Q. Hao, D. Wang. Large field-of-view holographic display method with speckle noise suppression based on time multiplexing. J. Soc. Inf. Disp., 29, 758(2021).
[16] C. Chang, Y Qi, J. Wu, J. Xia, S. Nie. Image magnified lensless holographic projection by convergent spherical beam illumination. Chin. Opt. Lett., 16, 100901(2018).
[17] W. Qu, H. Gu, H. Zhang, Q. Tan. Image magnification in lensless holographic projection using double-sampling Fresnel diffraction. Appl. Opt., 54, 10018(2015).
[18] K. Wang, Q. Kemao, J. Di, J. Zhao. Y4-Net: a deep learning solution to one-shot dual-wavelength digital holographic reconstruction. Opt. Lett., 45, 4220(2020).
[19] F. Niknam, H. Qazvini, H. Latifi. Holographic optical field recovery using a regularized untrained deep decoder network. Sci. Rep., 11, 10903(2021).
[20] J. Tang, J. Wu, K. Wang, Z. Ren, X. Wu, L. Hu, J. Di, G. Liu, J. Zhao. RestoreNet-Plus: image restoration via deep learning in optical synthetic aperture imaging system. Opt. Lasers Eng., 146, 106707(2021).
[21] H. Pang, A. Cao, W. Liu, L. Shi, Q. Deng. Effective method for further magnifying the image in holographic projection under divergent light illumination. Appl. Opt., 58, 8713(2019).
Get Citation
Copy Citation Text
Chentianfei Shen, Tong Shen, Qi Chen, Qinghan Zhang, Jihong Zheng, "Machine-learning-based high-speed lensless large-field holographic projection using double-sampling Fresnel diffraction method," Chin. Opt. Lett. 20, 050502 (2022)
Category: Diffraction, Gratings, and Holography
Received: Dec. 14, 2021
Accepted: Mar. 1, 2022
Posted: Mar. 2, 2022
Published Online: Mar. 28, 2022
The Author Email: Jihong Zheng (jihongzheng@usst.edu.cn)