Journal of Synthetic Crystals, Volume. 54, Issue 6, 1068(2025)
Lithium Storage Properties of Nanosized Hollow Cubic ZnMn2O4/rGO Composite Materials
[1] CHEN J, ZUO H S, WANG C Q et al. Synthesis and electrochemical properties of ZnMn2O4 with hollow porous panpipe-like structure as anode material for Li-ion battery. Electrochimica Acta, 426, 140780(2022).
[2] TOMAR A, SINGH J et al. Synergistic effect between ZnCo2O4 and Co3O4 induces superior electrochemical performance as anodes for lithium-ion batteries. Physical Chemistry Chemical Physics, 26, 13152-13163(2024).
[3] LI M T, LIU R R, WANG L Y et al. Iron-based bimetallic oxide carbon composites with superior lithium storage capabilities serve as anode in lithium-ion batteries. Inorganica Chimica Acta, 574, 122399(2025).
[4] VO T N, NGUYEN T A, NGUYEN D M K et al. Synthesis of ZnFe2O4 spinel nanoparticles at varying pH values and application in anode material for lithium-ion battery. Ceramics International, 49, 38824-38834(2023).
[5] ZHANG D, ZHANG C Y, XU H S et al. Ultrafast synthesis of spinel AMn2O4 (A=Co, Mn, Zn) nanopolyhedras and their composites applied to lithium ion battery anode. Journal of Alloys and Compounds, 987, 174212(2024).
[6] DONG L S, WANG Z G, MI C et al. Defect-rich hierarchical porous spinel MFe2O4 (M=Ni, Co, Fe, Mn) as high-performance anode for lithium ion batteries. Materials Today Chemistry, 35, 101853(2024).
[7] LIU G F, HAN Q, LIU K R. Coating effect of Al2O3 on ZnMn2O4 anode surface for lithium-ion batteries. Ionics, 30, 4509-4518(2024).
[8] YU K F, CHANG M S, YUE L F et al. Submicron cubic ZnMn2O4 loaded on biomass porous carbon used as high-performance bifunctional electrode for lithium-ion and sodium-ion batteries. Journal of Alloys and Compounds, 971, 172769(2024).
[9] WANG Y Y, XU S Y, ZHANG Y M et al. Facile construction of porous ZnMn2O4 hollow micro-rods as advanced anode material for lithium ion batteries. Nanomaterials, 13, 512(2023).
[10] LIU G F, HAN Q, LIU K R. Influence of preparation method on the performance of ZnMn2O4 anode material for lithium-ion batteries. International Journal of Electrochemical Science, 18, 100059(2023).
[11] ZHOU P, ZHONG L P, LIU Z Y et al. Porous ZnMn2O4 hollow microrods: facile construction and excellent electrochemical performances for lithium ion batteries. Applied Surface Science, 578, 152087(2022).
[12] ZHANG T, GAO Y, YUE H J et al. Convenient and high-yielding strategy for preparing nano-ZnMn2O4 as anode material in lithium-ion batteries. Electrochimica Acta, 198, 84-90(2016).
[13] GAO Q L, YUAN Z X, DONG L X et al. Reduced graphene oxide wrapped ZnMn2O4/carbon nanofibers for long-life lithium-ion batteries. Electrochimica Acta, 270, 417-425(2018).
[14] CHENG S K, RU Q, GAO Y Q et al. Anionic defect-enriched ZnMn2O4 nanorods with boosting pseudocapacitance for high-efficient and durable Li/Na storage. Chemical Engineering Journal, 406, 126133(2021).
[15] CAI K X, LUO S H, CONG J et al. Sol-gel synthesis of nano block-like ZnMn2O4 using citric acid complexing agent and electrochemical performance as anode for lithium-ion batteries. Journal of Alloys and Compounds, 909, 164882(2022).
[16] ZHANG J J, LU H Y, YAO T H et al. Copper-induced formation of heterostructured Co3O4/CuO hollow nanospheres towards greatly enhanced lithium storage performance. Chinese Chemical Letters, 35, 108450(2024).
[17] ZHANG Y, ZHANG P, XU Y et al. Synthesis of pomegranate-shaped micron ZnMn2O4 with enhanced lithium storage capability. Journal of Materiomics, 7, 699-707(2021).
[18] PITCHERI R, NUNNA G P, MERUM D et al. Bifunctional ZnMn2O4/reduced graphene oxide microspheres with a needle-like surface architecture as effective electrodes for energy storage. New Journal of Chemistry, 47, 10061-10069(2023).
[19] ZHONG X B, WANG X X, WANG H Y et al. Ultrahigh-performance mesoporous ZnMn2O4 microspheres as anode materials for lithium-ion batteries and their in situ Raman investigation. Nano Research, 11, 3814-3823(2018).
[20] RONG H B, XIE G T, CHENG S et al. Hierarchical porous ZnMn2O4 microspheres architectured with sub-nanoparticles as a high performance anode for lithium ion batteries. Journal of Alloys and Compounds, 679, 231-238(2016).
[21] ZHANG T, LIANG H, XIE C D et al. Morphology-controllable synthesis of spinel zinc manganate with highly reversible capability for lithium ion battery. Chemical Engineering Journal, 326, 820-830(2017).
[22] ZENG J S, REN Y B, WANG S B et al. Hierarchical porous ZnMn2O4 microspheres assembled by nanosheets for high performance anodes of lithium ion batteries. Inorganic Chemistry Frontiers, 4, 1730-1736(2017).
[23] LI H, YANG T B, JIN B et al. Enhanced reversible capability of a macroporous ZnMn2O4/C microsphere anode with a water-soluble binder for long-life and high-rate lithium-ion storage. Inorganic Chemistry Frontiers, 6, 1535-1545(2019).
[24] ZHAO P X, JIANG L, LI P S et al. Tailored engineering of Fe3O4 and reduced graphene oxide coupled architecture to realize the full potential as electrode materials for lithium-ion batteries. Journal of Colloid and Interface Science, 634, 737-746(2023).
[25] ZHENG Z M, CHENG Y L, YAN X B et al. Enhanced electrochemical properties of graphene-wrapped ZnMn2O4 nanorods for lithium-ion batteries. Journal of Materials Chemistry A, 2, 149-154(2014).
[26] LIU Y W, SUN S W, TAN S et al. Enhancing lithium storage performance of bimetallic oxides anode by synergistic effects. Journal of Colloid and Interface Science, 641, 386-395(2023).
[27] KUMAR A, MUKESH P, LAKSHMI SAGAR G et al. Synergistic boost in Fe3O4 anode performance for Li-ion batteries via Zn and Cu double doping and multi-walled carbon nanotube composite integration. Journal of Electroanalytical Chemistry, 964, 118327(2024).
[28] XIE L L, XU J, LIU M L et al. Ni-Co MOF-derived rambutan-like NiCo2O4/NC composite anode materials for high-performance lithium storage. Journal of Alloys and Compounds, 987, 174221(2024).
Get Citation
Copy Citation Text
Lin ZHANG, Qianghao CAI, Hanwen DAI, Yanming WANG, Fei WANG. Lithium Storage Properties of Nanosized Hollow Cubic ZnMn2O4/rGO Composite Materials[J]. Journal of Synthetic Crystals, 2025, 54(6): 1068
Category:
Received: Feb. 12, 2025
Accepted: --
Published Online: Jul. 8, 2025
The Author Email: Fei WANG (wangfeichem@126.com)