Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 499(2023)

Applications of Machine Learning in Thermoelectric Materials

SHENG Ye1, NING Jinyan1, and YANG Jiong1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(61)

    [1] [1] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457?1761.

    [2] [2] SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials[J]. Angew Chem Insst Edit, 2009, 48(46): 8616?8639.

    [3] [3] SNYDER G J, TOBERER E S. Complex thermoelectric materials[M]. Materials for Sustainable Energy. Co-Published with Macmillan Publishers Ltd, UK, 2010: 101?110.

    [4] [4] FROST R T, CORELLI J C, BALICKI M. Reactor irradiation PbTe, Bi2Te3 and ZnSb[J]. Adva Energy Convers, 1962, 2: 77?78.

    [5] [5] TANG Y, QIU Y, XI L, et al. Phase diagram of In-Co-Sb system and thermoelectric properties of In-containing skutterudites[J]. Energy Environ Sci, 2014, 7(2): 812?819.

    [6] [6] BAI S Q, PEI Y Z, CHEN L D, et al. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12[J]. Act Mater, 2009, 57(11): 3135?3139.

    [7] [7] TANG Y, HANUS R, CHEN S-W, et al. Solubility design leading to high figure of merit in low-cost Ce?CoSb3 skutterudites[J]. Nat Commun, 2015, 6(1): 7584.

    [8] [8] NOLAS G, MORELLI D, TRITT T. Skutterudites: A phonon? glass?electron crystal approach to advanced thermoelectric energy conversion applications[J]. Annual Rev Mater Sci, 1999, 29: 89?116.

    [9] [9] BOBEV S, SEVOV S C. Clathrates of group 14 with alkali metals: An exploration[J]. J Solid State Chem, 2000, 153(1): 92?105.

    [10] [10] HERRMANN R F, TANIGAKI K, KAWAGUCHI T, et al. Electronic structure of Si and Ge gold-doped clathrates[J]. Phys Rev B, 1999, 60(19): 13245.

    [11] [11] NOLAS G S, COHN J L, SLACK G A, et al. Semiconducting Ge clathrates: Promising candidates for thermoelectric applications[J]. Appl Phys Lett, 1998, 73(2): 178?180.

    [12] [12] SHI X, XI L, FAN J, et al. Cu?Se bond network and thermoelectric compounds with complex diamondlike structure[J]. Chem Mater, 2010, 22(22): 6029?6031.

    [13] [13] CULP S R, POON S J, HICKMAN N, et al. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 ?℃[J]. Appl Phys Lett, 2006, 88(4): 042106.

    [14] [14] CULP S R, SIMONSON J W, POON S J, et al. (Zr, Hf)Co(Sb, Sn) half-Heusler phases as high-temperature (>700 ℃) p-type thermoelectric materials[J]. Appl Phys Lett, 2008, 93(2): 022105.

    [15] [15] ZHU T, FU C, XIE H, et al. High efficiency half-heusler thermoelectric materials for energy harvesting[J]. Adv Energy Mater, 2015, 5(19): 1500588.

    [16] [16] CHEN S, REN Z. Recent progress of half-Heusler for moderate temperature thermoelectric applications[J]. Mater Today, 2013, 16(10): 387?395.

    [17] [17] XIE W, WEIDENKAFF A, TANG X, et al. Recent advances in nanostructured thermoelectric half-heusler compounds[J]. Nanomaterials, 2012, 2(4): 379?412.

    [18] [18] YAN X, JOSHI G, LIU W, et al. Enhanced thermoelectric figure of merit of p-type half-heuslers[J]. Nano Lett, 2011, 11(2): 556?560.

    [19] [19] QIU W, XI L, WEI P, et al. Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy[J]. Proceed National Academy Sci, 2014, 111(42): 15031?15035.

    [20] [20] VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597?602.

    [21] [21] HSU K F, LOO S, GUO F, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit[J]. Science, 2004, 303(5659): 818?821.

    [22] [22] PICHANUSAKORN P, BANDARU P. Nanostructured thermoelectrics[J]. Mater Sci Eng R-Reports, 2010, 67(2/4): 19?63.

    [23] [23] SHI X, CHEN L, UHER C. Recent advances in high-performance bulk thermoelectric materials[J]. Int Mater Rev, 2016, 61(6): 379?415.

    [24] [24] SHI X-L, ZOU J, CHEN Z G. Advanced thermoelectric design: From materials and structures to devices[J]. Chem Rev, 2020, 120(15): 7399?7515.

    [25] [25] CHEN W, P?HLS J H, HAUTIER G, et al. Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment[J]. J Mater Chem C, 2016, 4(20): 4414?26.

    [26] [26] RICCI F, CHEN W, AYDEMIR U, et al. An ab initio electronic transport database for inorganic materials[J]. Sci Data, 2017, 4: 170085.

    [27] [27] HEDEGAARD E M J, JOHNSEN S, BJERG L, et al. Functionally graded Ge1-xSix thermoelectrics by simultaneous band gap and carrier density engineering[J]. Chem Mater, 2014, 26(17): 4992?4997.

    [28] [28] HEDEGAARD E M J, MAMAKHEL A A H, REARDON H, et al. Functionally graded (PbTe)1-x(SnTe)x thermoelectrics[J]. Chem Mater, 2017, 30(1): 280?287.

    [29] [29] KOHRI H, NISHIDA I A, SHIOTA I. Improvement of thermoelectric properties for n-type PbTe by adding Ge[J]. Mater Sci Forum, 2003, 423?424: 381?4.

    [30] [30] YOU L, LI Z, MA Q, et al. High thermoelectric performance of Cu-doped PbSe-PbS system enabled by high-throughput experimental screening[J]. Research (Wash D C), 2020, 2020: 1736798.

    [31] [31] DENG T, XING T, BROD M K, et al. Discovery of high-performance thermoelectric copper chalcogenide using modified diffusion-couple high-throughput synthesis and automated histogram analysis technique[J]. Energy Environ Sci, 2020, 13(9): 3041?53.

    [32] [32] OLIYNYK A O, ADUTWUM L A, RUDYK B W, et al. Disentangling structural confusion through machine learning: structure prediction and polymorphism of equiatomic ternary phases ABC[J]. J Am Chem Soc, 2017, 139(49): 17870?81.

    [33] [33] CHONGHE L, YIHAO T, YINGZHI Z, et al. Prediction of lattice constant in perovskites of GdFeO3 structure[J]. J Phys Chem Solids, 2003, 64(11): 2147?56.

    [34] [34] JAVED S G, KHAN A, MAJID A, et al. Lattice constant prediction of orthorhombic ABO3 perovskites using support vector machines[J]. Comput Mater Sci, 2007, 39(3): 627?34.

    [35] [35] LEE J, SEKO A, SHITARA K, et al. Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques[J]. Phys Rev B, 2016, 93(11): 115104.

    [36] [36] XU Y, WANG X, LI X, et al. New materials band gap prediction based on the high-throughput calculation and the machine learning[J]. Scient Sin Technol, 2018, 49(1): 44?54.

    [37] [37] FURMANCHUK A, SAAL J E, DOAK J W, et al. Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: A machine learning approach[J]. J Comput Chem, 2018, 39(4): 191?202.

    [38] [38] SHENG Y, WU Y, YANG J, et al. Active learning for the power factor prediction in diamond-like thermoelectric materials[J]. npj Comput Mater, 2020, 6(1): 171.

    [39] [39] YANG Z, SHENG Y, ZHU C, et al. Accurate and explainable machine learning for the power factors of diamond-like thermoelectric materials[J]. J Materiomics, 2022, 8(3): 633?639.

    [40] [40] LI M, CAO G, LUO Y, et al. Predicting the lattice thermal conductivity of alloyed compounds from the perspective of configurational entropy[J]. npj Comput Mater, 2022, 8(1): 1?5.

    [41] [41] YANG H, ZHU Y, DONG E, et al. Dual adaptive sampling and machine learning interatomic potentials for modeling materials with chemical bond hierarchy[J]. Phys Rev B, 2021, 104(9): 094310.

    [42] [42] JAIN A, ONG S P, HAUTIER G, et al. Commentary: the materials project: A materials genome approach to accelerating materials innovation[J]. APL Mater, 2013, 1(1): 011002.

    [43] [43] JAIN A, HAUTIER G, MOORE C J, et al. A high-throughput infrastructure for density functional theory calculations[J]. Comput Mater Sci, 2011, 50(8): 2295?2310.

    [44] [44] SETYAWAN W, CURTAROLO S. High-throughput electronic band structure calculations: Challenges and tools[J]. Comput Mater Sci, 2010, 49(2): 299?312.

    [45] [45] CURTAROLO S, SETYAWAN W, WANG S, et al. AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations[J]. Comput Mater Sci, 2012, 58: 227?235.

    [46] [46] TAYLOR R H, ROSE F, TOHER C, et al. A RESTful API for exchanging materials data in the AFLOWLIB. org consortium[J]. Comput Mater Sci, 2014, 93: 178?92.

    [47] [47] SAAL J E, KIRKLIN S, AYKOL M, et al. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD)[J]. JOM, 2013, 65(11): 1501?1509.

    [48] [48] DRAXL C, SCHEFFLER M. NOMAD: The FAIR concept for big data-driven materials science[J]. MRS Bull, 2018, 43(9): 676?682.

    [49] [49] GILMER J, SCHOENHOLZ S, RILEY P, et al. Neural Message Passing for Quantum Chemistry[Z]. DOINA P, YEE WHYE T. Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research; PMLR. 2017: 1263?72.

    [50] [50] CHEN C, YE W, ZUO Y, et al. Graph networks as a universal machine learning framework for molecules and crystals[J]. Chem Mater, 2019, 31(9): 3564?3572.

    [51] [51] SCHUTT K T, SAUCEDA H E, KINDERMANS P J, et al. SchNet - A deep learning architecture for molecules and materials[J]. J Chem Phys, 2018, 148(24): 241722.

    [52] [52] PARK C W, WOLVERTON C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery[J]. Phys Rev Mater, 2020, 4(6): 063801.

    [53] [53] XIE T, GROSSMAN J C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties[J]. Phys Rev Lett, 2018, 120(14): 145301.

    [54] [54] CHOUDHARY K, DECOST B. Atomistic line graph neural network for improved materials property predictions[J]. NPJ Computational Materials, 2021, 7(1): 185.

    [55] [55] FUNG V, ZHANG J, JUAREZ E, et al. Benchmarking graph neural networks for materials chemistry[J]. npj Comput Mater, 2021, 7(1): 84.

    [56] [56] OMEE S S, LOUIS S Y, FU N, et al. Scalable deeper graph neural networks for high-performance materials property prediction[J]. Patterns, 2022, 3(5): 100491.

    [57] [57] BULGAREVICH D S, TSUKAMOTO S, KASUYA T, et al. Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures[J]. Scient Rep, 2018, 8(1): 2078.

    [58] [58] SHENG Y, DENG T, QIU P, et al. Accelerating the discovery of Cu-Sn-S thermoelectric compounds via high-throughput synthesis, characterization, and machine learning-assisted image analysis[J]. Chem Mater, 2021, 33(17): 6918?6924.

    [59] [59] GóMEZ-BOMBARELLI R, WEI J N, DUVENAUD D, et al. Automatic chemical design using a data-driven continuous representation of molecules[J]. ACS Central Sci, 2018, 4(2): 268?276.

    [60] [60] DE CAO N, KIPF T J A P A. MolGAN: An implicit generative model for small molecular graphs[J]. arXiv preprint, 2022, 10(4): arXiv:2018,1805.11973.

    [61] [61] LIU Y, GUO B, ZOU X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Mater, 2020, 31: 434?450.

    CLP Journals

    [1] LIU Xiao, WANG Simai, LU Lei, CHEN Meizhu, ZHAI Yue, CUI Suping. Development on Machine Learning for Durability Prediction of Concrete Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2062

    Tools

    Get Citation

    Copy Citation Text

    SHENG Ye, NING Jinyan, YANG Jiong. Applications of Machine Learning in Thermoelectric Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 499

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Oct. 12, 2022

    Accepted: --

    Published Online: Mar. 11, 2023

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20220863

    Topics