Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 30(2024)

Pitch Porous Carbon@C3N4 Composite Sulfur Carrier and Electrochemical Properties of Lithium-Sulfur Batteries

DONG Wei1,2, LI Su1, ZHAO Meina1, MENG Lingqiang1, YANG Fang1,2, HONG Xiaodong3, WU Xiaoguang1,2, JI Lingxiao1, SHEN Ding1,2, and YANG Shaobin1,2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(68)

    [1] [1] WANG H X, WEI D, ZHENG J C, et al. Electrospinning MoS2-decorated porous carbon nanofibers for high-performance lithium-sulfur batteries[J]. ACS Appl Energy Mater, 2020, 3(12): 11893-11899.

    [2] [2] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nat Mater, 2011, 11(1): 19-29.

    [3] [3] LIANG J, SUN Z H, LI F, et al. Carbon materials for Li-S batteries: functional evolution and performance improvement[J]. Energy Storage Mater, 2016, 2: 76-106.

    [4] [4] PANG Q, LIANG X, KWOK C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nat Energy, 2016, 1: 16132.

    [5] [5] LI Z, ZHANG J T, LOU X W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries[J]. Angew Chem Int Ed, 2015, 127(44): 12886-12890.

    [6] [6] CHUNG S H, MANTHIRAM A. Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries[J]. Adv Mater, 2014, 26(9): 1360-1365.

    [7] [7] GONG B J, SONG X D, SHI Y T, et al. Understanding the inhibition of the shuttle effect of sulfides (S≤3) in lithium-sulfur batteries by heteroatom-doped graphene: first-principles study[J]. J Phys Chem C, 2020, 124(6): 3644-3649.

    [8] [8] SHAN Z Z, HE Y Z, LIU N, et al. Spontaneously rooting carbon nanotube incorporated N-doped carbon nanofibers as efficient sulfur host toward high performance lithium-sulfur batteries[J]. Appl Surf Sci, 2021, 539: 148209.

    [9] [9] WU H L, XIA L, REN J, et al. A multidimensional and nitrogen-doped graphene/hierarchical porous carbon as a sulfur scaffold for high performance lithium sulfur batteries[J]. Electrochim Acta, 2018, 278: 83-92.

    [10] [10] LI Q, ZHANG Z A, GUO Z P, et al. Improved cyclability of lithium-sulfur battery cathode using encapsulated sulfur in hollow carbon nanofiber@nitrogen-doped porous carbon core-shell composite[J]. Carbon, 2014, 78: 1-9.

    [13] [13] JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat Mater, 2009, 8(6): 500-506.

    [15] [15] LIN S, CAI Y R, YANG J, et al. Entrapment of polysulfides by a Ketjen Black & mesoporous TiO2 modified glass fiber separator for high performance lithium-sulfur batteries[J]. J Alloys Compd, 2019, 779: 412-419.

    [16] [16] WU J, LI S Y, YANG P, et al. S@TiO2 nanospheres loaded on PPy matrix for enhanced lithium-sulfur batteries[J]. J Alloys Compd, 2019, 783: 279-285.

    [17] [17] GU X X, TONG C J, WEN B, et al. Ball-milling synthesis of ZnO@sulphur/carbon nanotubes and Ni(OH)2@sulphur/carbon nanotubes composites for high-performance lithium-sulphur batteries[J]. Electrochim Acta, 2016, 196: 369-376.

    [18] [18] NIU X Q, WANG X L, XIE D, et al. Nickel hydroxide-modified sulfur/carbon composite as a high-performance cathode material for lithium sulfur battery[J]. ACS Appl Mater Interfaces, 2015, 7(30): 16715-16722.

    [19] [19] DENG D R, XUE F, JIA Y J, et al. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries[J]. ACS Nano, 2017, 11(6): 6031-6039.

    [20] [20] DENG D R, AN T H, LI Y J, et al. Hollow porous titanium nitride tubes as a cathode electrode for extremely stable Li-S batteries[J]. J Mater Chem A, 2016, 4(41): 16184-16190.

    [21] [21] LIN H B, ZHANG S L, ZHANG T R, et al. A cathode-integrated sulfur-deficient Co9S8 catalytic interlayer for the reutilization of lost polysulfides in lithium-sulfur batteries[J]. ACS Nano, 2019, 13(6): 7073-7082.

    [22] [22] WANG N, CHEN B, QIN K Q, et al. Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: A study of synergistic adsorption-electrocatalysis function[J]. Nano Energy, 2019, 60: 332-339.

    [23] [23] LIU T, SUN X L, SUN S M, et al. A robust and low-cost biomass carbon fiber@SiO2 interlayer for reliable lithium-sulfur batteries[J]. Electrochim Acta, 2019, 295: 684-692.

    [24] [24] KOU W, LI X C, LIU Y, et al. Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li-S batteries[J]. ACS Nano, 2019, 13(5): 5900-5909.

    [25] [25] LONG L Z, JIANG X Y, LIU J, et al. In situ template synthesis of hierarchical porous carbon used for high performance lithium-sulfur batteries[J]. RSC Adv, 2018, 8(9): 4503-4513.

    [26] [26] ZHAO Y, BAKENOVA Z, ZHANG Y G, et al. High performance sulfur/nitrogen-doped graphene cathode for lithium/sulfur batteries[J]. Ionics, 2015, 21(7): 1925-1930.

    [27] [27] QIU Y C, LI W F, ZHAO W, et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Lett, 2014, 14(8): 4821-4827.

    [28] [28] XU H, YAN J, SHE X J, et al. Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2-[J]. Nanoscale, 2014, 6(3): 1406-1415.

    [29] [29] JIA Z Y, ZHANG H Z, YU Y, et al. Trithiocyanuric acid derived g-C3N4 for anchoring the polysulfide in Li-S batteries application[J]. J Energy Chem, 2020, 43: 71-77.

    [30] [30] WANG L Q, TONG Y Y, FENG J M, et al. G-C3N4-based films: a rising star for photoelectrochemical water splitting[J]. Sustain Mater Technol, 2019, 19: e00089.

    [31] [31] HONG X D, LIANG J, TANG X N, et al. Hybrid graphene album with polysulfides adsorption layer for Li-S batteries[J]. Chem Eng Sci, 2019, 194: 148-155.

    [32] [32] GONG Y, FU C P, ZHANG G P, et al. Three-dimensional porous C3N4 Nanosheets@Reduced graphene oxide network as sulfur hosts for high performance lithium-sulfur batteries[J]. Electrochim Acta, 2017, 256: 1-9.

    [33] [33] MA-LANA K, KALE-CZUK R J, ZIELI-SKA B, et al. Synthesis and characterization of nitrogen-doped carbon nanotubes derived from g-C3N4[J]. Materials, 2020, 13(6): 1349.

    [34] [34] Peng W, Zhao L, Ying-Mei Z, et al. Synthesis of Carbon Nanotubes Modified g-C3N4 Photocatalysts for Enhanced Photocatalytic Degradation Activity[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(2): 217-224.

    [35] [35] HUANGFU Y G, ZHENG T T, ZHANG K, et al. Facile fabrication of permselective g-C3N4 separator for improved lithium-sulfur batteries[J]. Electrochim Acta, 2018, 272: 60-67.

    [36] [36] QU L, LIU P, YI Y K, et al. Enhanced cycling performance for lithium-sulfur batteries by a laminated 2D g-C3N4/graphene cathode interlayer[J]. ChemSusChem, 2019, 12(1): 213-223.

    [37] [37] ZHANG H K, LIN X R, LI J J, et al. A binder-free lithium-sulfur battery cathode using three-dimensional porous g-C3N4 nanoflakes as sulfur host displaying high binding energies with lithium polysulfides[J]. J Alloys Compd, 2021, 881: 160629.

    [38] [38] ZOU Y L, ZOU H Y, AO Z, et al. N-doped porous carbon coated g-C3N4/g-C3N4 heterojunction for polysulfide restriction and catalytic conversion towards enhanced lithium-sulfur batteries[J]. J Alloys Compd, 2023: 168772

    [39] [39] WANG M, LIANG Q H, HAN J W, et al. Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries[J]. Nano Res, 2018, 11(6): 3480-3489.

    [41] [41] WANG Z Y, WANG L, LIU S, et al. Conductive CoOOH as carbon-free sulfur immobilizer to fabricate sulfur-based composite for lithium-sulfur battery[J]. Adv Funct Mater, 2019, 29(23):1901051.

    [42] [42] WALLE M D, LIU Y N. Confine sulfur in double-hollow carbon sphere integrated with carbon nanotubes for advanced lithium-sulfur batteries[J]. Mater Renew Sustain Energy, 2021, 10(1): 1-8.

    [43] [43] SUI Z Y, YANG Q S, ZHOU H Y, et al. Nitrogen-doped graphene aerogel as both a sulfur host and an effective interlayer for high-performance lithium-sulfur batteries[J]. Nanotechnology, 2017, 28(49): 495701.

    [44] [44] SUI Z Y, MENG Y N, XIAO P W, et al. Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents[J]. ACS Appl Mater Interfaces, 2015, 7(3): 1431-1438.

    [45] [45] LI X Y, WANG X, YANG W H, et al. Three-dimensional hierarchical flowerlike FeP wrapped with N-doped carbon possessing improved Li+ diffusion kinetics and cyclability for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2019, 11(43): 39961-39969.

    [46] [46] LI Z, JIANG Y, YUAN L X, et al. A highly orderedmeso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries[J]. ACS Nano, 2014, 8(9): 9295-9303.

    [47] [47] LI Z, JIANG Y, YUAN L X, et al. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries[J]. ACS Nano, 2014, 8(9): 9295-9303.

    [48] [48] LI Z, YUAN L X, YI Z Q, et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J]. Adv Energy Mater, 2014, 4(7): 1301473.

    [49] [49] ZHANG Z W, LI Z Q, HAO F B, et al. 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability[J]. Adv Funct Mater, 2014, 24(17): 2500-2509.

    [50] [50] BAI Y Q, NGUYEN T T, CHU R R, et al. Core-shell hollow nanostructures as highly efficient polysulfide conversion and adsorption cathode for shuttle-free lithium-sulfur batteries[J]. Chem Eng J, 2023, 454: 140338.

    [51] [51] ZHOU F, LI Z, LUO X, et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries[J]. Nano Lett, 2018, 18(2): 1035-1043.

    [52] [52] FAN F Y, CARTER W C, CHIANG Y M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries[J]. Adv Mater, 2015, 27(35): 5203-5209.

    [53] [53] LEE J S, KIM W, JANG J, et al. Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium-sulfur batteries[J]. Adv Energy Mater, 2017, 7(5): 1601943

    [54] [54] AHN W, SEO M H, JUN Y S, et al. Sulfur nanogranular film-coated three-dimensional graphene sponge-based high power lithium sulfur battery[J]. ACS Appl Mater Interfaces, 2016, 8(3): 1984-1991.

    [55] [55] FAN Y, YANG Z, HUA W X, et al. Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries)[J]. Adv Energy Mater, 2017, 7(13): 1602380.

    [56] [56] WANG J Y, LIU Y Z, CHENG M, et al. Hierarchical porous carbon-graphene-based Lithium-Sulfur batteries[J]. Electrochim Acta, 2019, 318: 161-168.

    [57] [57] WANG J, YANG S H, XU Z J, et al. Addressing the prominent Li+ intercalation process of metal sulfide catalyst in Li-S batteries[J]. Adv Mater Inter, 2022, 9(6): 2101699

    [58] [58] FANG R P, ZHAO S Y, HOU P X, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. AdvMater, 2016, 28(17): 3374-3382.

    [59] [59] WANG X L, LI G R, LI M J, et al. Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries[J]. J Energy Chem, 2021, 53: 234-240.

    [60] [60] FANG R P, ZHAO S Y, HOU P X, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Adv Mater, 2016, 28(17): 3374-3382.

    [61] [61] MIAO L X, WANG W K, YUAN K G, et al. A lithium-sulfur cathode with high sulfur loading and high capacity per area: a binder-free carbon fiber cloth-sulfur material[J]. Chem Commun, 2014, 50(87): 13231-13234.

    [62] [62] GAO N, ZHANG Y J, CHEN C, et al. Low-temperature Li-S battery enabled by CoFe bimetallic catalysts[J]. J Mater Chem A, 2022, 10(15): 8378-8389.

    [63] [63] HONG S, HAN Y Z, ZHANG K, et al. TiO2 nanosheet-redox graphene oxide/sulphur cathode for high-performance lithium-sulphur batteries[J]. J Nanosci Nanotechnol, 2020, 20(3): 1715-1722.

    [64] [64] ZHAO Z Y, LI G R, WANG Z, et al. Black BaTiO3 as multifunctional sulfur immobilizer for superior lithium sulfur batteries[J]. J Power Sourses, 2019, 434: 226729.

    [65] [65] YAN Y J, CHEN Y X, WANG Z F, et al. Flower-like Ni3S2 hollow microspheres as superior sulfur hosts for lithium-sulfur batteries[J]. Microporous Mesoporous Mater, 2021, 326: 111355.

    [66] [66] KIM M S, KIM M S, DO V, et al. Facile and scalable fabrication of high-energy-density sulfur cathodes for pragmatic lithium-sulfur batteries[J]. J Power Sources, 2019, 422: 104-112.

    [67] [67] ZHAO Z Y, LI G R, WANG Z, et al. Black BaTiO3 as multifunctional sulfur immobilizer for superior lithium sulfur batteries[J]. J Power Sources, 2019, 434: 226729.

    [68] [68] CARBONE L, CONEGLIAN T, GOBET M, et al. A simple approach for making a viable, safe, and high-performances lithium-sulfur battery[J]. J Power Sources, 2018, 377: 26-35.

    [69] [69] CARBONE L, DEL RIO CASTILLO A E, KUMAR PANDA J, et al. High-sulfur-content graphene-based composite through ethanol evaporation for high-energy lithium-sulfur battery[J]. Chem Sus Chem, 2020, 13(6): 1593-1602.

    [70] [70] ZHOU X Y, CHEN F, YANG J A, et al. Dual protection of sulfur by interconnected porous carbon nanorods and graphene sheets for lithium-sulfur batteries[J]. J Electroanal Chem, 2015, 747: 59-67.

    [71] [71] LI Q, WANG H J, MA J J, et al. Porous Fe2O3-C microcubes as anodes for lithium-ion batteries by rational introduction of Ag nanoparticles[J]. J Alloys Compd, 2018, 735: 840-846.

    [72] [72] LIN X, WANG H Q, DU H W, et al. Growth of lithium lanthanum titanate nanosheets and their application in lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2016, 8(2): 1486-1492.

    Tools

    Get Citation

    Copy Citation Text

    DONG Wei, LI Su, ZHAO Meina, MENG Lingqiang, YANG Fang, HONG Xiaodong, WU Xiaoguang, JI Lingxiao, SHEN Ding, YANG Shaobin. Pitch Porous Carbon@C3N4 Composite Sulfur Carrier and Electrochemical Properties of Lithium-Sulfur Batteries[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 30

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 22, 2023

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: YANG Shaobin (lgdysb@163.com)

    DOI:

    CSTR:32186.14.

    Topics