Chinese Journal of Lasers, Volume. 42, Issue 8, 802013(2015)

Passive Harmonic Mode-Locking in Er-Doped Fiber Laser Based on Mechanical Exfoliated Graphene Saturable Absorber

Hu Tonghuan*, Jiang Guobao, Chen Yu, Zhao Chujun, and Zhang Han
Author Affiliations
  • [in Chinese]
  • show less
    References(44)

    [1] [1] Becker M, Kuizenga D J, Siegman A. Harmonic mode locking of the Nd∶YAG laser[J]. IEEE Journal of Quantum Electronics, 1972, 8(8): 687-693.

    [2] [2] Richardson D J, Laming R I, Payne D N, et al.. 320 fs soliton generation with passively mode-locked erbium fibre laser[J]. Electronics Letters, 1991, 27(9): 730-732.

    [3] [3] Grudinin A B, Richardson D J, Payne D N. Passive harmonic modelocking of a fibre soliton ring laser[J]. Electronics Letters, 1993, 29(21): 1860-1861.

    [4] [4] Gray S, Grudinin A B, Loh W H, et al.. Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps[J]. Optics Letters, 1995, 20(2): 189-191.

    [5] [5] Grudinin A B, Gray S. Passive harmonic mode locking in soliton fiber lasers[J]. J Opt Soc Am B, 1997, 14(1): 144-154.

    [6] [6] Collings B C, Bergman K, Knox W H. Stable multigigahertz pulse-train formation in a short-cavity passively harmonic modelocked erbium/ytterbium fiber laser[J]. Opt Lett, 1998, 23(2): 123-125.

    [7] [7] Chen Y, Raravikar N R, Schadler L S, et al.. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm[J]. Appl Phys Lett, 2002, 81(6): 975-977.

    [8] [8] Nicholson J W, Windeler R S, DiGiovanni D J. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces[J]. Opt Express, 2007, 15(15): 9176-9183.

    [9] [9] Set S Y, Yaguchi H, Tanaka Y, et al.. Ultrafast fiber pulsed lasers incorporating carbon nanotubes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(1): 137-146.

    [10] [10] Wang F, Rozhin A G, Scardaci V, et al.. Wideband-tunable, nanotube mode-locked, fibre laser[J]. Nature Nanotechnology, 2008, 3(12): 738-742.

    [11] [11] Solodyankin M A, Obraztsova E D, Lobach A S, et al.. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber[J]. Opt Lett, 2008, 33(12): 1336-1338.

    [12] [12] Kieu K, Wise F W. Soliton thulium-doped fiber laser with carbon nanotube saturable absorber[J]. IEEE Photonics Technology Letters, 2009, 21(3): 128.

    [13] [13] Jiang K, Fu S, Shum P, et al.. A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes[J]. Photonics Technology Letters, IEEE, 2010, 22(11): 754-756.

    [14] [14] Jun C S, Im J H, Yoo S H, et al.. Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes[J]. Opt Express, 2011, 19(20): 19775-19780.

    [15] [15] Set S Y, Yaguchi H, Tanaka Y, et al.. Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes[C]. Optical Fiber Communication Conference, 2003: 87.

    [16] [16] Novoselov K S, Geim A K, Morozov S V, et al.. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

    [17] [17] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

    [18] [18] Neto A H C, Guinea F, Peres N M R, et al.. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109.

    [19] [19] Ferrari A C, Meyer J C, Scardaci V, et al.. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett, 2006, 97(18): 187401.

    [20] [20] Bao Q, Zhang H, Wang Y, et al.. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

    [21] [21] Zhang H, Tang D, Zhao L, et al.. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J]. Opt Express, 2009, 17(20): 17630-17635.

    [22] [22] Popa D, Sun Z, Torrisi F, et al.. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Appl Phys Lett, 2010, 97(20): 203106.

    [23] [23] Sun Z, Hasan T, Torrisi F, et al.. Graphene mode-locked ultrafast laser[J]. American Chemical Society Nano, 2010, 4(2): 803-810.

    [24] [24] Tian Zhen, Liu Shanliang, Zhang Bingyuan, et al.. Graphene mode-locked Er3+doped fiber pulse laser[J]. Chinese J Lasers, 2011, 38(3): 0302004.

    [25] [25] Chang Y, Kim H, Lee J, et al.. Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers[J]. Appl Phys Lett, 2010, 97(21): 211102.

    [26] [26] Luo Z, Zhou M, Weng J, et al.. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Opt Lett, 2010, 35(21): 3709-3711.

    [27] [27] Liu J, Wu S, Yang Q, et al.. Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser[J]. Opt Lett, 2011, 36(20): 4008-4010.

    [28] [28] Liu Jiang, Wu Sida, Wang Ke, et al.. Passively mode-locked and Q-switched Yb-doped fiber lasers with graphene-based saturable absorber[J]. Chinese J Lasers, 2011, 38(8): 0802001.

    [29] [29] Huang W, Feng D, Jiang S, et al.. Erbium-doped fiber laser based on single-layer graphene saturable absorber[J]. Chinese J Lasers, 2013, 40(2): 0202001.

    [30] [30] Cao W, Wang H, Luo A, et al.. Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser[J]. Laser Physics Letters, 2012, 9(1): 54.

    [31] [31] Martinez A, Fuse K, Xu B, et al.. Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing[J]. Opt Express, 2010, 18(22): 23054-23061.

    [32] [32] Liu Z, He X, Wang D. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution[J]. Opt Lett, 2011, 36(16): 3024-3026.

    [33] [33] Martinez A, Fuse K, Yamashita S. Mechanical exfoliation of graphene for the passive 34mode-locking of fiber lasers[J]. Appl Phys Lett, 2011, 99(12): 121107.

    [34] [34] Wang Guanghui, Wang Zhiteng, Chen Yu, et al.. Passively graphene mode-locked soliton erbium-doped fiber lasers[J]. Chinese J Lasers, 2012, 39(6): 0602003.

    [35] [35] Huang P, Lin S, Yeh C, et al.. Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber[J]. Opt Express, 2012, 20(3): 2460-2465.

    [36] [36] Wang Q, Chen T, Zhang B, et al.. All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers[J]. Appl Phys Lett, 2013, 102(13): 131117.

    [37] [37] Sotor J, Sobon G, Krzempek K, et al.. Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber[J]. Optics Communications, 2012, 285(13): 3174-3178.

    [38] [38] Sobon G, Sotor J, Abramski K M. Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz[J]. Appl Phys Lett, 2012, 100(16): 161109.

    [39] [39] Meng Y, Zhang S, Li X, et al.. Passive harmonically mode-locked fiber laser with low pumping power based on a graphene saturable absorber[J]. Laser Physics Letters, 2012, 9(7): 537.

    [40] [40] Feng Q, Chen Y, Zhao C, et al.. Experimental study on the multisoliton pattern formation in an erbium-doped fiber laser passively mode-locked by graphene saturable absorber[J]. Optical Engineering, 2013, 52(4): 044201.

    [41] [41] Amrani F, Haboucha A, Salhi M, et al.. Passively mode-locked erbium-doped double-clad fiber laser operating at the 322 nd harmonic[J]. Opt Letters, 2009, 34(14): 2120-2122.

    [42] [42] Panasenko D, Polynkin P, Polynkin A, et al.. Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates[J]. IEEE Photonics Technology Letters, 2006, 18(7): 853-855.

    [43] [43] Zhao B, Tang D, Kong J, et al.. Periodic soliton amplitude variation caused by unstable dispersive waves in a laser[J]. Optics Communications, 2005, 254(4): 242-247.

    [44] [44] Tang D, Zhao L, Zhao B, et al.. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers[J]. Physical Review A, 2005, 72(4): 043816.

    CLP Journals

    [1] Huang Haitao, Li Min, Jin Lin, Wang Hui, Liu Pian, Shen Deyuan. Passively Q-Switched 1 μm Solid-State Laser Using Gold Nanorod as Saturable Absorber[J]. Chinese Journal of Lasers, 2017, 44(7): 703021

    [2] Chen Kai, Zhu Lianqing, Lou Xiaoping, Yao Qifeng, Luo Fei. All-polarization-maintaining fiber laser mode-locked by graphene[J]. Infrared and Laser Engineering, 2017, 46(10): 1005004

    [3] Bi Weihong, Ma Jingyun, Yang Kaili, Tian Pengfei, Wang Xiaoyu, Li Caili. Graphene-Based Optical Fiber and Its Applications[J]. Laser & Optoelectronics Progress, 2017, 54(4): 40002

    Tools

    Get Citation

    Copy Citation Text

    Hu Tonghuan, Jiang Guobao, Chen Yu, Zhao Chujun, Zhang Han. Passive Harmonic Mode-Locking in Er-Doped Fiber Laser Based on Mechanical Exfoliated Graphene Saturable Absorber[J]. Chinese Journal of Lasers, 2015, 42(8): 802013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 29, 2015

    Accepted: --

    Published Online: Sep. 24, 2022

    The Author Email: Tonghuan Hu (hutonghuan1989@sina.com)

    DOI:10.3788/cjl201542.0802013

    Topics