Acta Optica Sinica, Volume. 39, Issue 1, 0128002(2019)

Gaussian Mixture Model and Classification of Polarimetric Features for SAR Images

Luoru Li*, Xin Xu*, Hao Dong, Rong Gui, and Xinfang Xie
Author Affiliations
  • School of Electronic Information, Wuhan University, Wuhan, Hubei 430072, China
  • show less
    Figures & Tables(16)
    Polarimetric SAR images from Radarsat-2 in San Francisco. (a) Pauli pseudo color image; (b) corresponding map; (c) ground truth
    Polarimetric SAR images from Radarsat-2 in Flevoland. (a) Pauli pseudo color image; (b) corresponding map; (c) ground truth
    Polarimetric SAR images from Radarsat-2 in Vancouver. (a) Pauli pseudo color image; (b) corresponding map; (c) ground truth
    Fitting results of each feature at different distributions. (a) Water; (b) forest; (c) farmland; (d) urban
    Flow chart of constrained distance estimation algorithm
    Distance function at different parameters
    Fitting results at different parameters. (a) k=1; (b) k=5; (c) k=8
    Flow chart of polarimetric SAR image classification algorithm based on GMM model
    Polarimetric SAR classification results in San Francisco. (a) KNN; (b) SVM; (c) RF; (d) WHRT; (e) GMM
    Polarimetric SAR classification results in Flevoland. (a) KNN; (b) SVM; (c) RF; (d) WHRT; (e) GMM
    Polarimetric SAR classification results in Vancouver. (a) KNN; (b) SVM; (c) RF; (d) WHRT; (e) GMM
    Overall accuracy vs. number of training samples
    • Table 1. KS distance mean at different distributions

      View table

      Table 1. KS distance mean at different distributions

      DistributionWaterForestFarmlandUrban
      Gamma1.4140.6910.4361.221
      Log-normal1.2770.7960.4001.115
      K1.7641.1340.7841.515
      GMM0.2450.2570.2830.175
    • Table 2. Maximum KS distance at different distributions

      View table

      Table 2. Maximum KS distance at different distributions

      DistributionWaterForestFarmlandUrban
      Gamma2.5440.9410.5372.087
      Log-normal2.2331.3870.5061.890
      K3.1351.4190.8822.551
      GMM0.3050.3220.4010.250
    • Table 3. Experimental accuracy in classification of polarimetric SAR%

      View table

      Table 3. Experimental accuracy in classification of polarimetric SAR%

      PlaceAlgorithmWaterForestFarmlandUrbanOverallKappa
      San FranciscoKNN99.8298.28-69.1794.3491.16
      SVM99.6896.70-78.2695.0391.61
      RF99.7898.24-79.7395.9792.76
      WHRT99.4295.44-73.0193.0189.24
      GMM99.5098.98-95.8496.9093.23
      FlevolandKNN86.7791.1075.2974.9183.8576.23
      SVM82.4790.4272.8875.2982.7175.15
      RF85.9886.0373.6975.8883.0176.60
      WHRT85.6086.9672.0572.1980.8972.37
      GMM87.6985.8192.7088.1989.7082.11
      VancouverKNN99.2887.1573.8848.1981.0266.77
      SVM99.1884.7263.2066.1080.5765.45
      RF99.2886.8679.5672.5284.1669.35
      WHRT99.2188.7266.4986.2180.2166.22
      GMM99.6686.8880.0896.7189.9774.22
    • Table 4. Experimental accuracy in classification of polarimetric SAR under different features in Flevoland%

      View table

      Table 4. Experimental accuracy in classification of polarimetric SAR under different features in Flevoland%

      Feature setsAlgorithmWaterForestFarmlandUrbanOverallKappa
      Cloude-PottierdecompositionKNN82.7395.5474.5915.5969.8761.74
      SVM77.4092.2379.8315.6769.7361.63
      RF84.0794.8783.0433.8477.7968.75
      GMM88.0076.4882.6782.4279.8670.58
      FreemandecompositionKNN92.5690.3987.5137.4178.8770.70
      SVM70.2089.5177.1334.2475.3869.22
      RF93.0186.0688.8851.1581.0071.58
      GMM94.5367.5789.7785.0382.3572.78
      YamaguchidecompositionKNN86.6189.0569.7670.4380.0970.78
      SVM89.3188.3167.7865.6075.8968.65
      RF86.3887.6877.0372.0080.6971.31
      GMM87.5884.5070.7192.9582.2372.61
    Tools

    Get Citation

    Copy Citation Text

    Luoru Li, Xin Xu, Hao Dong, Rong Gui, Xinfang Xie. Gaussian Mixture Model and Classification of Polarimetric Features for SAR Images[J]. Acta Optica Sinica, 2019, 39(1): 0128002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jun. 12, 2018

    Accepted: Aug. 23, 2018

    Published Online: May. 10, 2019

    The Author Email:

    DOI:10.3788/AOS201939.0128002

    Topics