Acta Optica Sinica, Volume. 39, Issue 1, 0128002(2019)
Gaussian Mixture Model and Classification of Polarimetric Features for SAR Images
Fig. 1. Polarimetric SAR images from Radarsat-2 in San Francisco. (a) Pauli pseudo color image; (b) corresponding map; (c) ground truth
Fig. 2. Polarimetric SAR images from Radarsat-2 in Flevoland. (a) Pauli pseudo color image; (b) corresponding map; (c) ground truth
Fig. 3. Polarimetric SAR images from Radarsat-2 in Vancouver. (a) Pauli pseudo color image; (b) corresponding map; (c) ground truth
Fig. 4. Fitting results of each feature at different distributions. (a) Water; (b) forest; (c) farmland; (d) urban
Fig. 8. Flow chart of polarimetric SAR image classification algorithm based on GMM model
Fig. 9. Polarimetric SAR classification results in San Francisco. (a) KNN; (b) SVM; (c) RF; (d) WHRT; (e) GMM
Fig. 10. Polarimetric SAR classification results in Flevoland. (a) KNN; (b) SVM; (c) RF; (d) WHRT; (e) GMM
Fig. 11. Polarimetric SAR classification results in Vancouver. (a) KNN; (b) SVM; (c) RF; (d) WHRT; (e) GMM
|
|
|
|
Get Citation
Copy Citation Text
Luoru Li, Xin Xu, Hao Dong, Rong Gui, Xinfang Xie. Gaussian Mixture Model and Classification of Polarimetric Features for SAR Images[J]. Acta Optica Sinica, 2019, 39(1): 0128002
Category: Remote Sensing and Sensors
Received: Jun. 12, 2018
Accepted: Aug. 23, 2018
Published Online: May. 10, 2019
The Author Email: