NUCLEAR TECHNIQUES, Volume. 48, Issue 7, 070020(2025)

Prediction method of reactor transient thermal-hydraulic parameters based on Seq2Seq model

Jingyu CHEN, Xiyang LIU, Tengwei YANG, Pengcheng ZHAO, and Zijing LIU*
Author Affiliations
  • School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • show less
    Figures & Tables(17)
    Neural structure of LSTM neural networks
    CNN structural unit
    Schematic diagram Seq2Seq model
    Schematic diagram of wavelet decomposition
    Wavelet analysis decomposition results of the highest envelope temperature of China experimental fast reactor
    Comparison of Mean Relative Error (MRE) among four encoder-decoder combinations (color online)
    Comparison of maximum relative error among four encoder-decoder combinations (color online)
    Comparison of RMSE among four encoder-decoder combinations (color online)
    Comparison of the training time among four encoder-decoder combination (color online)
    Comparison of temperature between CNN-LSTM predicted value and real value (color online)
    Schematics of K-fold cross-validation based on time series
    Loss function of CNN-LSTM neural network with 5 folds cross-validation (color online)
    Loss function of CNN-LSTM neural network verified five times by self help method (color online)
    • Table 1. CEFR core design parameters

      View table
      View in Article

      Table 1. CEFR core design parameters

      参数Parameters数值Values
      功率Power / MW65
      组件内燃料棒数Number of fuel rods in the module61
      活性区高度Height of active zone / mm450
      燃料棒直径Fuel rod diameter / mm6.0
      包壳厚度Shell thickness / mm0.3
      芯块外径/内径Core block outer/inner diameter / mm5.2/1.6
      堆芯进口/出口温度Inlet/outlet temperature of the core / ℃360/530
      定位绕丝螺距Positioning winding pitch / mm100
    • Table 2. Seq2Seq model prediction error of different encoders-decoders

      View table
      View in Article

      Table 2. Seq2Seq model prediction error of different encoders-decoders

      预测变量

      Predictor variables

      神经网络模型结构(编码器-解码器)

      Neural network model structure

      (encoder-decoder)

      MRE×100%RMSE

      最大相对误差

      Maximum relative

      error / %

      模型训练时间

      Model training

      time / s

      包壳最高温度

      Maximum shell temperature

      CNN-CNN0.1421.112 740.878190.038
      CNN-LSTM0.0990.772 280.552404.467
      LSTM-CNN0.2471.692 331.123467.045
      LSTM-LSTM0.1371.117 490.855289.722
    • Table 3. Prediction error of CNN-LSTM neural network with 5 folds cross-validation

      View table
      View in Article

      Table 3. Prediction error of CNN-LSTM neural network with 5 folds cross-validation

      预测变量

      Predictor variables

      次数

      Number of times

      MRE×100%RMSE

      最大相对误差

      Maximum relative error / %

      模型训练时间

      Model training time / s

      包壳最高温度

      Maximum shell temperature

      10.4262.722 320.79682.953
      20.2882.080 650.926154.763
      30.1531.093 820.528247.583
      40.2001.404 010.549339.037
      50.1160.953 690.721413.203
    • Table 4. Prediction error of CNN-LSTM neural network verified by five self help methods

      View table
      View in Article

      Table 4. Prediction error of CNN-LSTM neural network verified by five self help methods

      预测变量

      Predictor variables

      次数

      Number of times

      MRE×100%RMSE

      最大相对误差

      Maximum relative error / %

      模型训练时间

      Model training time / s

      包壳最高温度

      Maximum shell temperature

      10.062 30.457 610.796481.099
      20.060 20.442 180.926448.932
      30.080 70.589 930.528437.014
      40.060 40.438 450.549446.559
      50.044 10.327 500.721438.514
    Tools

    Get Citation

    Copy Citation Text

    Jingyu CHEN, Xiyang LIU, Tengwei YANG, Pengcheng ZHAO, Zijing LIU. Prediction method of reactor transient thermal-hydraulic parameters based on Seq2Seq model[J]. NUCLEAR TECHNIQUES, 2025, 48(7): 070020

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue on The First Academic Annual Conference of the Research Reactor and Innovative Reactor Association of Chinese Nuclear Society and Advanced Nuclear Power System Reactor Engineering

    Received: Apr. 21, 2024

    Accepted: --

    Published Online: Sep. 15, 2025

    The Author Email: Zijing LIU (LIUZijing)

    DOI:10.11889/j.0253-3219.2025.hjs.48.240132

    Topics