Journal of the Chinese Ceramic Society, Volume. 52, Issue 2, 390(2024)

Selective Modification of Graphdiyne Sites Endowed by Alkyne Bonds

WANG Zumin1, YANG Nailiang1, YU Ranbo2、*, and WANG Dan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(56)

    [1] [1] INAGAKI M, KANG F, TOYODA M, et al. Advanced materials science and engineering of carbon[J]. MRS Bull, 2013, 39: 1018.

    [2] [2] WANG Y Z, YANG P J, ZHENG L X, et al. Carbon nanomaterials with sp2 or/and sp hybridization in energy conversion and storage applications: A review[J]. Energy Storage Mater, 2020, 26: 349-370.

    [3] [3] BAUGHMAN R H, ECKHARDT H, KERTESZ M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms[J]. J Chem Phys, 1987, 87(11): 6687-6699.

    [4] [4] LI G X, LI Y L, LIU H B, et al. Architecture of graphdiyne nanoscale films[J]. Chem Commun, 2010, 46(19): 3256-3258.

    [5] [5] LI J, ZHU L, TUNG C H, et al. Engineering graphdiyne for solar photocatalysis[J]. Angew Chem Int Ed, 2023, 62(22): e202301384.

    [6] [6] ZHOU X, FU B H, LI L J, et al. Hydrogen-substituted graphdiyne encapsulated cuprous oxide photocathode for efficient and stable photoelectrochemical water reduction[J]. Nat Commun, 2022, 13: 5770.

    [7] [7] SHANG H, ZUO Z C, YU L, et al. Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance lithium-ion batteries[J]. Adv Mater, 2018, 30(27): 1801459.

    [8] [8] HUANG H H, LI K N, FAN X F, et al. Storage of Na in layered graphdiyne as high capacity anode materials for sodium ion batteries[J]. J Mater Chem A, 2019, 7(44): 25609-25618.

    [9] [9] KRISHNAMOORTHY K, THANGAVEL S, CHELORA VEETIL J, et al. Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors[J]. Int J Hydrog Energy, 2016, 41(3): 1672-1678.

    [10] [10] PARVIN N, JIN Q, WEI Y Z, et al. Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection[J]. Adv Mater, 2017, 29(18): 1606755.

    [11] [11] LIU J M, CHEN C Y, ZHAO Y L. Progress and prospects of graphdiyne-based materials in biomedical applications[J]. Adv Mater, 2019, 31(42): 1804386.

    [12] [12] JIN J, GUO M Y, LIU J M, et al. Graphdiyne nanosheet-based drug delivery platform for photothermal/chemotherapy combination treatment of cancer[J]. ACS Appl Mater Interfaces, 2018, 10(10): 8436-8442.

    [13] [13] GAO X, ZHOU J Y, DU R, et al. Robust superhydrophobic foam: A graphdiyne-based hierarchical architecture for oil/water separation[J]. Adv Mater, 2016, 28(1): 168-173.

    [14] [14] LIU Q, LI J Q, HADJICHRISTIDIS N. Graphdiyne aerogel architecture via a modified Hiyama coupling reaction for gas adsorption[J]. Chem Commun, 2023, 59(15): 2165-2168.

    [15] [15] LI B S, LAI C, ZHANG M M, et al. Graphdiyne: A rising star of electrocatalyst support for energy conversion[J]. Adv Energy Mater, 2020, 10(16): 2000177.

    [16] [16] ZHAN Shuhui, ZHAO Yasong, YANG Nailiang, et al. Chem J Chin Univ, 2021, 42(2): 333-348.

    [17] [17] ZHAO Yasong, ZHANG Lijuan, QI Jian, et al. Acta Phys Chim Sin, 2018, 34(9): 1048-1060.

    [18] [18] GAO X, LIU H B, WANG D, et al. Graphdiyne: Synthesis, properties, and applications[J]. Chem Soc Rev, 2019, 48(3): 908-936.

    [19] [19] HUANG Changshui, LI Yuliang. Acta Phys Chim Sin, 2016, 32(6): 1314-1329.

    [20] [20] ZHANG C, XUE Y R, ZHENG X C, et al. Loaded Cu-Er metal iso-atoms on graphdiyne for artificial photosynthesis[J]. Mater Today, 2023, 66: 72-83.

    [21] [21] BAI L, ZHENG Z Q, WANG Z Q, et al. Acetylenic bond-driven efficient hydrogen production of a graphdiyne based catalyst[J]. Mater Chem Front, 2021, 5(5): 2247-2254.

    [22] [22] YANG Z, SONG Y W, REN X, et al. A universal way to prepare graphyne derivatives with variable band gap and lithium storage properties[J]. Carbon, 2021, 182: 413-421.

    [23] [23] REN H, SHAO H, ZHANG L J, et al. A new graphdiyne nanosheet/Pt nanoparticle-based counter electrode material with enhanced catalytic activity for dye-sensitized solar cells[J]. Adv Energy Mater, 2015, 5(12): 1500296.

    [24] [24] WANG S, YI L X, HALPERT J E, et al. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite[J]. Small, 2012, 8(2): 265-271.

    [25] [25] YANG N L, LIU Y Y, WEN H, et al. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment[J]. ACS Nano, 2013, 7(2): 1504-1512.

    [26] [26] LIU R J, LIU H B, LI Y L, et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions[J]. Nanoscale, 2014, 6(19): 11336-11343.

    [27] [27] LV Q, SI W Y, YANG Z, et al. Nitrogen-doped porous graphdiyne: A highly efficient metal-free electrocatalyst for oxygen reduction reaction[J]. ACS Appl Mater Interfaces, 2017, 9(35): 29744-29752.

    [28] [28] LI J, YI Y, ZUO X, et al. Graphdiyne/graphene/graphdiyne sandwiched carbonaceous anode for potassium-ion batteries[J]. ACS Nano, 2022, 16(2): 3163-3172.

    [29] [29] WANG N, HE J J, TU Z Y, et al. Synthesis of chlorine-substituted graphdiyne and applications for lithium-ion storage[J]. Angew Chem Int Ed, 2017, 56(36): 10740-10745.

    [30] [30] ZOU H Y, ARACHCHIGE L J, RONG W F, et al. Low-valence metal single atoms on graphdiyne promotes electrochemical nitrogen reduction via M-to-N2 π-backdonation[J]. Adv Funct Mater, 2022, 32(24): 2200333.

    [31] [31] WANG N, LI X D, TU Z Y, et al. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage[J]. Angew Chem Int Ed, 2018, 57(15): 3968-3973.

    [32] [32] SHEN X Y, LI X D, ZHAO F H, et al. Preparation and structure study of phosphorus-doped porous graphdiyne and its efficient lithium storage application[J]. 2D Mater, 2019, 6(3): 035020.

    [33] [33] AUTRETO P A S, DE SOUSA J M, GALVAO D S. Site-dependent hydrogenation on graphdiyne[J]. Carbon, 2014, 77: 829-834.

    [34] [34] YANG Z, CUI W W, WANG K, et al. Chemical modification of the sp-hybridized carbon atoms of graphdiyne by using organic sulfur[J]. Chem A Eur J, 2019, 25(22): 5643-5647.

    [35] [35] ZHAO Y S, YANG N L, YAO H Y, et al. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction[J]. J Am Chem Soc, 2019, 141(18): 7240-7244.

    [36] [36] ZHAO Y S, WAN J W, YAO H Y, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis[J]. Nat Chem, 2018, 10(9): 924-931.

    [37] [37] LIU B K, ZHAN S H, DU J, et al. Revealing the mechanism of sp-N doping in graphdiyne for developing site-defined metal-free catalysts[J]. Adv Mater, 2022: 2206450.

    [38] [38] ZHAO Y S, WAN J W, YANG N L, et al. Sp-Hybridized nitrogen doped graphdiyne for high-performance Zn-air batteries[J]. Mater Chem Front, 2021, 5: 7987-7992.

    [39] [39] BU H X, ZHAO M W, ZHANG H Y, et al. Isoelectronic doping of graphdiyne with boron and nitrogen: Stable configurations and band gap modification[J]. J Phys Chem A, 2012, 116(15): 3934-3939.

    [40] [40] ZHAO Y S, YANG N L, WANG C D, et al. Boosting hydrogen evolution reaction on few-layer graphdiyne by sp-N and B co-doping[J]. APL Mater, 2021, 9(7): 071102.

    [41] [41] HE J J, WANG N, YANG Z, et al. Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance[J]. Energy Environ Sci, 2018, 11(10): 2893-2903.

    [42] [42] AN J, ZHANG H Y, QI L, et al. Self-expanding ion-transport channels on anodes for fast-charging lithium-ion batteries[J]. Angew Chem Int Ed, 2022, 61(7): e202113313.

    [43] [43] WANG K, WANG N, HE J J, et al. Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors[J]. ACS Appl Mater Interfaces, 2017, 9(46): 40604-40613.

    [44] [44] CRANFORD S W, BUEHLER M J. Selective hydrogen purification through graphdiyne under ambient temperature and pressure[J]. Nanoscale, 2012, 4(15): 4587-4593.

    [45] [45] ZHOU Z H, TAN Y T, YANG Q, et al. Gas permeation through graphdiyne-based nanoporous membranes[J]. Nat Commun, 2022, 13(1): 1-6.

    [46] [46] MA H, YANG B B, WANG Z, et al. A three dimensional graphdiyne-like porous triptycene network for gas adsorption and separation[J]. RSC Adv, 2022, 12(44): 28299-28305.

    [47] [47] XUE M M, QIU H, GUO W L. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers[J]. Nanotechnology, 2013, 24(50): 505720.

    [48] [48] ZHAN S H, CHEN X B, XU B, et al. Hollow multishelled structured graphdiyne realized radioactive water safe-discharging[J]. Nanotoday, 2022, 47: 101626.

    [49] [49] FU X L, ZHAO X, LU T B, et al. Graphdiyne-based single-atom catalysts with different coordination environments[J]. Angew Chem Int Ed, 2023, 62(16): e202219242.

    [50] [50] XUE Y R, HUANG B L, YI Y P, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution[J]. Nat Commun, 2018, 9(1): 1-10.

    [51] [51] HUI L, XUE Y R, YU H D, et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst[J]. J Am Chem Soc, 2019, 141(27): 10677-10683.

    [52] [52] YU H D, XUE Y R, HUI L, et al. Graphdiyne-based metal atomic catalysts for synthesizing ammonia[J]. Natl Sci Rev, 2021, 8(8): nwaa213.

    [53] [53] ZHENG Z Q, WANG Z Q, XUE Y R, et al. Selective conversion of CO2 into cyclic carbonate on atom level catalysts[J]. ACS Mater Au, 2021, 1(2): 107-115.

    [54] [54] SHI G D, XIE Y L, DU L L, et al. Constructing Cu?C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4[J]. Angew Chem Int Ed, 2022, 61(23): e202203569.

    [55] [55] HUI L, XUE Y R, XING C Y, et al. Highly loaded independent Pt0 atoms on graphdiyne for pH-general methanol oxidation reaction[J]. Adv Sci, 2022, 9(16): 2104991.

    [56] [56] HE T W, ZHANG L, KOUR G, et al. Electrochemical reduction of carbon dioxide on precise number of Fe atoms anchored graphdiyne[J]. J CO2 Util, 2020, 37: 272-277.

    Tools

    Get Citation

    Copy Citation Text

    WANG Zumin, YANG Nailiang, YU Ranbo, WANG Dan. Selective Modification of Graphdiyne Sites Endowed by Alkyne Bonds[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 390

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jun. 28, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: YU Ranbo (ranboyu@ustb.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics