Infrared Technology, Volume. 45, Issue 1, 1(2023)
Research Progress of Silicon-based BIB Infrared Detector
[1] [1] McCreight C R, McKelvey M E, Goebel J H, et al. Detector arrays for low-background space infrared astronomy[C]//Infrared detectors, Sensors, and Focal Plane Arrays of SPIE, 1986, 686: 66-75.
[2] [2] Szmulowicz F, Madarasz F L. Blocked impurity band detectors—an analytical model: figures of merit[J]. Journal of Applied Physics, 1987, 62(6): 2533-2540.
[3] [3] Battersby C, Armus L, Bergin E, et al. The origins space telescope[J]. Nature Astronomy, 2018, 2(8): 596-599.
[5] [5] CHEN H C, LIN C C, HAN H W, et al. Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers[J]. Optics Express, 2011, 19(105): A1141-A1147.
[6] [6] JUANG J Y, ZHOU K, BANG J H, et al. Improved photovoltaic performance of Si nanowire solar cells integrated with ZnSe quantum dots[J]. The Journal of Physical Chemistry C, 2012, 116(23): 12409-12414.
[7] [7] WU C, Crouch C H, ZHAO L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Applied Physics Letters, 2001, 78(13): 1850-1852.
[8] [8] Crouch C, Carey J, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Appl Phys A, 2004, 79: 1635-1641.
[9] [9] ZHANG T, Ahmad W, LIU B, et al. Broadband infrared response of sulfur hyperdoped silicon under femtosecond laser irradiation[J]. Materials Letters, 2017, 196: 16-19.
[11] [11] Petroff M D, Stapelbroek M G. Blocked Impurity Band Detectors: 4568 960[P]. U.S. Patent, 1986-02-04.
[12] [12] Petroff M D, Stapelbroek M G. Responsivity and noise models of blocked impurity band detectors[C]//Proc. IRIS Specialty Group on Infrared Detectors, 1984, 2.
[13] [13] Rieke G H. Infrared detector arrays for astronomy[J]. Annu. Rev. Astron. Astrophys., 2007, 45: 77-115.
[14] [14] Khalap V, Hogue H. Antimony-doped silicon blocked impurity band (BIB) arrays for low flux applications[C]//Infrared Sensors, Devices, and Applications II. International Society for Optics and Photonics, 2012, 8512: 85120O.
[15] [15] Huffman J E, Crouse A G, Halleck B L, et al. Si:Sb blocked impurity band detectors for infrared astronomy[J]. Journal of Applied Physics, 1992, 72(1): 273-275.
[16] [16] Asadauskas L, Brazis R, Leotin J. Optical phonon line in boron-doped silicon BIB structures[C]//Materials Science Forum. Trans Tech Publications Ltd., 1999, 297: 361-364.
[17] [17] Hogue H H, Guptill M T, Monson J C, et al. Far-infrared blocked impurity band detector development[C]//Infrared Spaceborne Remote Sensing and Instrumentation XV of SPIE, 2007, 6678: 63-73.
[18] [18] Woods S I, Proctor J E, Jung T M, et al. Wideband infrared trap detector based upon doped silicon photocurrent devices[J]. Applied Optics, 2018, 57(18): D82-D89.
[19] [19] Stetson S B, Reynolds D B, Stapelbroek M G, et al. Design and performance of blocked-impurity-band detector focal plane arrays[C]//Infrared Detectors, Sensors, and Focal Plane Arrays of SPIE, 1986, 686: 48-65.
[20] [20] Noel R A. Large-area blocked-impurity-band focal plane array development[C]//Infrared Detectors and Focal Plane Arrays II of SPIE, 1992, 1685: 250-259.
[21] [21] Lum N A, Asbrock J F, White R, et al. Low-noise, low-temperature 256.256 Si: As IBC staring FPA[C]//Infrared Detectors and Instrumentation of SPIE, 1993, 1946: 100-109.
[22] [22] Suffis S, Caes M, Deliot P, et al. Characterization of 128.192 Si: Ga focal plane arrays: study of nonuniformity, stability of its correction, and application for the CRYSTAL camera[C]//Infrared Detectors and Focal Plane Arrays V of SPIE, 1998, 3379: 235-248.
[23] [23] Matsuhara H. IRC: an infrared camera on board the IRIS[C]//Infrared Astronomical Instrumentation of SPIE, 1998, 3354: 915-921.
[24] [24] Sohn E, Schneider E R, Cruz-Gonzales I, et al. Mid-infrared camera/ spectrograph for OAN/SPM[C]//Infrared Astronomical Instrumentation, 1998, 3354: 822-824.
[25] [25] McMurray Jr R E, Johnson R R, McCreight C R, et al. Si: As IBC array performance for SIRTF/IRAC[C]//Infrared Spaceborne Remote Sensing VIII of SPIE, 2000, 4131: 62-69.
[26] [26] Deutsch L K, Hora J L, Adams J D, et al. MIRSI: a mid-infrared spectrometer and imager[C]//Instrument Design and Performance for Optical/Infrared Ground-based Telescopes of SPIE, 2003, 4841: 106-116.
[27] [27] Ennico K A, McKelvey M E, McCreight C R, et al. Large format Si: As IBC array performance for NGST and future IR space telescope applications[C]//IR Space Telescopes and Instruments of SPIE, 2003, 4850: 890-901.
[28] [28] Ennico K A, Greene T P, McCreight C R, et al. Development and testing of a 1024.1024 pixel Si: As IBC detector for SOFIA-like applications[C]// Airborne Telescope Systems II of SPIE, 2003, 4857: 155-165.
[29] [29] Hogue H H, Guptill M L, Reynolds D, et al. Space mid-IR detectors from DRS[C]//IR Space Telescopes and Instruments, 2003, 4850: 880-889.
[30] [30] Adams J D, Herter T L, Keller L D, et al. Testing of mid-infrared detector arrays for FORCAST[C]//Optical and Infrared Detectors for Astronomy of SPIE, 2004, 5499: 442-451.
[31] [31] Love P J, Hoffman A W, Lum N A, et al. 1024.1024 Si: As IBC detector arrays for JWST MIRI[C]//Focal Plane Arrays for Space Telescopes II of SPIE, 2005, 5902: 58-66.
[32] [32] Mainzer A K, Hong J, Stapelbroek M G, et al. A new large-well 1024.1024 Si: As detector for the mid-infrared[C]//Infrared and Photoelectronic Imagers and Detector Devices of SPIE, 2005, 5881: 253-260.
[33] [33] Mainzer A, Larsen M, Stapelbroek M G, et al. Characterization of flight detector arrays for the wide-field infrared survey explorer[C]//High Energy, Optical, and Infrared Detectors for Astronomy III of SPIE, 2008, 7021: 302-313.
[34] [34] Ives D, Finger G, Jakob G, et al. AQUARIUS: the next generation mid-IR detector for ground-based astronomy[C]//High Energy, Optical, and Infrared Detectors for Astronomy V of SPIE, 2012, 8453: 296-308.
[35] [35] Reynolds D B, Seib D H, Stetson S B, et al. Blocked impurity band hybrid infrared focal plane arrays for astronomy[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 857- 862.
[36] [36] Petroff M D, Stapelbroek M G. Blocked Impurity Band Detectors, Radiation Hard, High Performance LWIR Detectors[C]//Proceedings, IRIS Specialty Group on Infrared Detectors, 1980: 48-62.
[37] [37] Mainzer A, Larsen M, Stapelbroek M G, et al. Characterization of flight detector arrays for the wide-field infrared survey explorer[C]//High Energy, Optical, and Infrared Detectors for Astronomy III of SPIE, 2008, 7021: 302-313.
[38] [38] Ando K J, Hoffman A W, Love P J, et al. Development of Si: As impurity band conduction (IBC) detectors for mid-infrared applications[C]// Infrared Technology and Applications XXIX, 2003, 5074: 648-657.
[39] [39] LIAO K, LI N, LIU X, et al. Ion-implanted Si: P blocked-impurity-band photodetectors for far-infrared and terahertz radiation detection[C]//International Symposium on Photoelectronic Detection and Imaging on Terahertz Technologies and Applications of SPIE, 2013, 8909: 257-265.
[40] [40] Hogue H, Atkins E, Reynolds D, et al. Update on blocked impurity band detector technology from DRS[C]//Detectors and Imaging Devices: Infrared, Focal Plane, Single Photon. International Society for Optics and Photonics, 2010, 7780: 778004.
[41] [41] Sclar N. Properties of doped silicon and germanium infrared detectors[J]. Progress in Quantum Electronics, 1984, 9(3): 149-257.
[42] [42] Kleinhans W A, Petroff M D, Stapelbroek M G. Hybrid Si: As BIBIB Detector Arrays[C/OL]//Proc. of IRIS Specialty Group on Infrared Detectors, 1984: https://www.researchgate.net/profile/George-Gull/ publication/234236444_Improved_SiAs_BIBIB_Back-Illuminated_ Blocked-Impurity-Band_hybrid_arrays/links/0f317537a14b676810000 000/Improved-SiAs-BIBIB-Back-Illuminated-Blocked-Impurity-Band-hybrid-arrays.pdf.
[43] [43] Fowler A M, Joyce R R. Status of the NOAO evaluation of the Hughes 20x64 Si: As impurity band conduction array[C]//Instrumentation in Astronomy VII, 1990, 1235: 151-159.
[44] [44] Larsen M F, Sargent S D, Tansock Jr J J. On-orbit goniometric calibration for the SPIRIT III radiometer[C]//Signal and Data Processing of Small Targets of SPIE, 1998, 3373: 32-43.
[45] [45] Hoffman A W, Love P J, Ando K J, et al. Large infrared and visible arrays for low-background applications: an overview of current developments at Raytheon[C]//Optical and Infrared Detectors for Astronomy, 2004, 5499: 240-249.
[46] [46] Mainzer A K, Hogue H, Stapelbroek M, et al. Characterization of a megapixel mid-infrared array for high background applications[C]//High Energy, Optical, and Infrared Detectors for Astronomy III, 2008, 7021: 70210T.
[47] [47] Hogue H H, Mattson R B, Stapelbroek M G, et al. Focal plane detectors for the WISE 12-and 23-μm bands[C]//Infrared Systems and Photoelectronic Technology II of SPIE, 2007, 6660: 194-202.
[48] [48] Mainzer A K, Hong J, Stapelbroek M G, et al. A new large-well 1024.1024 Si: As detector for the mid-infrared[C]//Infrared and Photoelectronic Imagers and Detector Devices, 2005, 5881: 58810Y.
[49] [49] McMurray Jr R E, Johnson R R, McCreight C R, et al. Si: As IBC array performance for SIRTF/IRAC[C]//Infrared Spaceborne Remote Sensing VIII of SPIE, 2000, 4131: 62-69.
[50] [50] Ando K J, Hoffman A W, Love P J, et al. Development of Si: As impurity band conduction (IBC) detectors for mid-infrared applications[C]// Infrared Technology and Applications XXIX, 2003, 5074: 648-657.
[51] [51] Starr B, Mears L, Fulk C, et al. RVS large format arrays for astronomy[C]//High Energy, Optical, and Infrared Detectors for Astronomy VII of SPIE, 2016, 9915: 929-942.
[52] [52] Miyata T, Sako S, Nakamura T, et al. Development of a new mid-infrared instrument for the TAO 6.5-m Telescope[C]//Ground-based and Airborne Instrumentation for Astronomy III, 2010, 7735: 77353P.
[53] [53] Stacey G J, Hayward T L, Latvakoski H M, et al. KWIC: a widefield mid-infrared array camera/spectrometer for the KAO[C]//Infrared Detectors and Instrumentation, 1993, 1946: 238-248.
[54] [54] Van Cleve J E, Herter T L, Butturini R, et al. Evaluation of Si: As and Si: Sb blocked-impurity-band detectors for SIRTF and WIRE[C]//Infrared Spaceborne Remote Sensing III of SPIE, 1995, 2553: 502-513.
[55] [55] Dotson J L, McKelvey M, McMurray Jr R, et al. Cryogenic testing of a 1024×1024 Si: As array for WISE[C]//Focal Plane Arrays for Space Telescopes III, 2007, 6690: 66900F.
[56] [56] WANG C, LI N, DAI N, et al. High performance infrared detectors compatible with CMOS-circuit process[J]. Chinese Physics B, 2021, 30(5): 050702.
[57] [57] ZHU H, ZHU J, HU W, et al. Temperature-sensitive mechanism for silicon blocked-impurity-band photodetectors[J]. Applied Physics Letters, 2021, 119(19): 191104.
[58] [58] ZHU H, ZHU J, XU H, et al. Design and fabrication of plasmonic tuned THz detectors by periodic hole structures[J]. Infrared Physics & Technology, 2019, 99: 45-48.
[59] [59] DENG K, ZHANG K, LI Q, et al. High-operating temperature far-infrared Si: Ga blocked-impurity-band detectors[J]. Applied Physics Letters, 2022, 120(21): 211103.
[60] [60] CHEN Y, TONG W, WANG B, et al. The absorption enhancement effect of metal gratings integrated Silicon-based Blocked-Impurity-Band (BIB) terahertz detectors[C]//2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) of IEEE, 2021: 43-44.
[61] [61] XIAO Y, ZHU H, DENG K, et al. Progress and challenges in blocked impurity band infrared detectors for space-based astronomy[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(8): 1-17.
[62] [62] Herter T L, Hayward T L, Houck J R, et al. Mid-and far-infrared hybrid focal plane arrays for astronomy[C]//Infrared Astronomical Instrumentation of SPIE, 1998, 3354: 109-115.
[63] [63] Stapelbroek M G, Hogue H H, Atkins E W, et al. Silicon for visible-to-VLWIR photon detection[C]//Infrared Technology and Applications XXIX, 2003, 5074: 166-172.
[64] [64] Bamberg J A, Zaun N H. Design and performance of the cryogenic focal plane optics assembly for the Infrared Astronomical Satellite (IRAS)[C]//Cryogenic Optical Systems and Instruments I of SPIE, 1985, 509: 94-102.
[65] [65] Werner M W, Roellig T L, Low F J, et al. The Spitzer space telescope mission[J]. The Astrophysical Journal Supplement Series, 2004, 154(1): 1.
[66] [66] Mainzer A K, Eisenhardt P, Wright E L, et al. Preliminary design of the wide-field infrared survey explorer (WISE)[C]//UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II Of SPIE, 2005, 5899: 262-273.
[67] [67] Gardner, J.P., Mather, J.C., Clampin, M., et al. The James Webb Space telescope[J]. Space Science Reviews, 2006, 123(4): 485-606.
[68] [68] Huffman J E. Infrared detectors for 2-to 220-um astronomy[C]//Infrared Detectors: State of the Art II, 1994, 2274: 157-169.
[69] [69] Herter T, Stacey G, Gull G, et al. FORCAST: a WIDE-field infrared camera for SOFIA[C]//American Astronomical Society Meeting Abstracts, 1997, 191: 09.02.
[70] [70] Mather J C, Cheng E S, Eplee Jr R E, et al. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite[J]. The Astrophysical Journal, 1990, 354: L37-L40.
[71] [71] Rauter P, Fromherz T, Winnerl S, et al. Terahertz Si: B blocked-impurity-band detectors defined by nonepitaxial methods[J]. Applied Physics Letters, 2008, 93(26): 261104.
[72] [72] Mary W. Jackson NASA Headquarters. NASA Missions[DB/OL]. https://www.nasa.gov/missions.
Get Citation
Copy Citation Text
MA Xingzhao, TANG Libin, ZHANG Yuping, ZUO Wenbin, WANG Shanli, JI Rongbin. Research Progress of Silicon-based BIB Infrared Detector[J]. Infrared Technology, 2023, 45(1): 1
Category:
Received: Nov. 24, 2022
Accepted: --
Published Online: Mar. 23, 2023
The Author Email: Libin TANG (scitang@163.com)
CSTR:32186.14.