Optical Technique, Volume. 50, Issue 1, 40(2024)
Nonlinear effects and research progress of high-power ytterbium-doped fiber laser
[1] [1] Seo Y, Lee D, Pyo S. The interaction of high-power fiber laser irradiation with intrusive rocks[J]. Scientific Reports,2022,12:680.
[2] [2] Fu Bingyan, OuYang Basheng, Liu Weidong, et al. Study on fiber laser rotary drilling process of 0.12mm SUS304[J]. Optical Technique,2016,42(02):126—129.
[3] [3] E Honea, R S Afzal, M Savage-Leuchs, et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness[C]∥High-Power Lasers 2012: Technology and Systems. Edinburgh, United Kingdom: Proc. SPIE,2013:860115.
[4] [4] S Taccheo. Fiber lasers for medical diagnostics and treatments: state of the art,challenges and future perspectives[C]∥Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVII. San Francisco, USA:Proc.SPIE,2017:1005808.
[5] [5] Yu Jing, Hu Shuling, Gao Chunqing, et al. Theoretical analysis and experimental study of double-clad Yb3+-doped Fiber laser[J]. Optical Technique,2006,32(S1):87—89.
[6] [6] Y Liu, F Zhang, N Zhao, et al. Single transverse mode laser in a center-sunken and cladding-trenched Yb-doped fiber[J]. Optics Express,2018,26(3):3421—3426.
[7] [7] E Garmire. Perspectives on stimulated Brillouin scattering[J]. New Journal of Physics,2017,19(1):011003.
[8] [8] Jauregui C, Limpert J, Tünnermann A. High-power fiber lasers[J].Nature Photonics,2013,7:861—867.
[9] [9] Zhaode Li, Shangde Zhou, Aimin Liu, et al. Experimental study on the in-band amplified spontaneous emission in the single-mode continuous-wave Yb-Doped fiber amplifier operating near 980 nm[J]. Photonics,2022,9(6):377.
[10] [10] M Cavillon, C Kucera, T W Hawkins, et al. Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities[J]. Optical Materials Express,2018,8(4):744—760.
[11] [11] A Kobyakov, M Sauer, D Chowdhury. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics,2010,2(1):1—59.
[12] [12] R G Smith. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering[J]. Applied Optics,1972,11(11):2489—2494.
[13] [13] G. P. Agrawal, Nonlinear fiber optics[M]. New York: Academic Press,1995:370—403.
[14] [14] Deepak Jain, Yongmin Jung, Pranabesh Barua, et al. Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers[J]. Optics Express,2015,23(6):7407—7415.
[15] [15] Anping Liu. Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient[J]. Optics Express,2007,15(3):977—984.
[16] [16] J. Hansryd, F. Dross, M. Westlund, et al. Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution[J]. Journal of Lightwave Technology,2001,19(11):1691—1697.
[17] [17] VP D Dragic, C Kucera, J Ballato, et al. Brillouin scattering properties of lanthano-aluminosilicate optical fiber[J]. Applied Optics,2014,53(25):5660—5671.
[18] [18] M. E. Lines. Raman-gain estimates for high-gain optical fibers[J]. Journal of Applied Physics,1987,62(11):4363.
[19] [19] Maximilian Heck, Victor Bock, Ria G. Krmer, et al. Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings[C]∥Fiber Lasers XV: Technology and Systems. San Francisco,USA:Proc.SPIE,2018:105121I.
[20] [20] J. Kim, P. Dupriez, C. Codemard, et al. Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off[J]. Optics Express,2006,14(12):5103—5113.
[21] [21] Ma X, Hu IN, Galvanauskas A. Propagation-length independent SRS threshold in chirally-coupled-core fibers[J]. Optics Express,2011,19(23):22575—22581.
[22] [22] Thomas Tanggaard Alkeskjold, Single-mode large-mode area fiber amplifier with higher-order mode suppression and distributed passband filtering of ASE and SRS[C]∥ Fiber Lasers Ⅶ: Technology, Systems, and Applications.San Francisco,USA:Proc.SPIE,2010:758012.
[23] [23] John Ballato, Peter Dragic. Rethinking optical fiber: new demands, old glasses[J]. Journal of the American Ceramic Society,2013,96(9):2675—2692.
[24] [24] P D Dragic, J Ballato. Characterisation of Raman gain spectra in Yb∶YAG-derived optical fibres[J]. Electron. Lett.,2013,49(14):895—897.
[25] [25] Sheng Quan, Wang Meng, Shi Chao-Du, et al. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses[J]. Acta Phys. Sin.,2021,70(21):214202.
[26] [26] K Nakajima, M Ohashi. Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers[J]. IEEE Photonics Technology Letters,2002,14(4):492—494.
[27] [27] L. Dong. Stimulated thermal Rayleigh scattering in optical fibers[J]. Optics Express,2013,21(3):2642—2656.
[28] [28] C Shi, Rong Tao Su, Han Wei Zhang, et al. Experimental study of output characteristics of bi-directional pumping high power fiber amplifier in different pumping schemes[J]. IEEE Photonics Journal,2017,9(3):1—10.
[29] [29] Xuexue Luo, Rumao Tao, Xiaoming Xi, et al. Experimental study of mode instability in high power all-fiber amplifier under different pumping power distribution[C]∥High-Power Lasers and Applications IX. Beijing,China:Proc.SPIE,2018:1081109.
[30] [30] Ali Roohforouz, Reza Eyni Chenar, Reza Rezaei-Nasirabad, et al. The effect of population inversion saturation on the transverse mode instability threshold in high power fiber laser oscillators[J]. Sci Rep,2021,11:21116.
[31] [31] F Beier, C Hupel, J Nold, et al. Narrow linewidth, single mode 3kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express,2016,24(6):6011—6020.
[32] [32] P Dragic, M Cavillon, J Ballato. On the thermo-optic coefficient of P2O5 in SiO2[J]. Opt. Mater. Express,2017,7(10):3654—3661.
[33] [33] Andrey Kobyakov, Michael Sauer, Dipak Chowdhury, Stimulated Brillouin scattering in optical fibers[J]. Adv. Opt. Photon.,2010,2(1):1—59.
[34] [34] Zhang C, Xie L, Li H, et al. SRS-induced spatial-spectral distortion and its mitigation strategy in high-power fiber amplifiers[J]. IEEE Photonics Journal,2022,14(2):3016605.
[35] [35] Hejaz K, Shayganmanesh M, Rezaei-nasirabad R, et al. Modalinstability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers[J]. Optics Letters,2017,42(24):5274—5277.
[36] [36] B M Anderson, N A Naderi, A Flores. Nonlinear characterization of a kilowatt-class amplifier based on laser gain competition[C]∥Conference on Lasers and Electro-Optics (CLEO), San Jose, USA:Optica Publishing Group,2018:SW4K.3.
[37] [37] Tino Eidam, Christian Wirth, Cesar Jauregui, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express,2011,19(14):13218—13224.
[38] [38] Yuya Takubo, Shinya Ikoma, Keisuke Uchiyama, et al. 5-kW single-mode fiber laser[J]. Fujikura Technical Review,2018,48:33—35.
[39] [39] Baolai Yang, Chen Shi, Hanwei Zhang, et al. Monolithic fiber laser oscillator with record high power[J]. Laser Physics Letters,2018,15(7):75106.
[40] [40] Y Wang, R. Kitahara, W Kiyoyama, et al. 8kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[C]∥ Fiber Lasers XVII: Technology and Systems. San Francisco,USA:Proc.SPIE,2020:1126022.
[41] [41] Yang Baolai, Wang Xiaolin, Ye Yun, et al. Laser power from all-fiber oscillators breaks through 6kW[J]. Chinese Journal of Lasers,2020,47(1):0116001.
[42] [42] Xi Xiaoming, Wang Peng, Yang Baolai, et al. Output power of all fiber laser oscillator exceeds 7kW[J]. Chinese Journal of Lasers,2021,48(1):0116001.
[43] [43] Ding Xin-Yi, Wang Li, Zeng Ling-Fa, et al. Double-ended output near-single-mode quasi-continuouswave monolithic fiber laser[J]. Acta Phys. Sin.,2023,72(15):154205.
[44] [44] Wang Feng, Li Min, Yang Kangwen, et al. All-fiber high-energy femtosecond pulse amplification system[J]. Optical Technique,2021,47(03):293—298.
[45] [45] Liu Jiaqi, Zeng Lingfa, Shi Chen, et al. A bidirectional output all-fiber laser oscillator with record output power of 8 kW[J]. High Power Laser and Particle Beams,2023,35(8):081003.
[46] [46] Lin Honghuan, Tang Xuan, Li Chengyu, et al. The localization single-fiber laser system obtained 10.6kW laser output[J]. Chinese Journal of Lasers,2018,45(3):0315001.
[49] [49] Xi Xiaoming, Yang Baolai, Zhang Hanwei, et al. 20 kW monolithic fiber amplifier directly pumped by LDs[J]. High Power Laser and Particle Beams,2023,35,(2):021001.
[50] [50] Chen Xiaolong, Lou Fengguang, He Yu, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica,2019,39(3):0336001.
[52] [52] Reza Rezaei-Nasirabad, Saeed Azizi, Ali Hamedani Golshan, et al. 3kW bi-directional pumped single mode fiber amplifier; technical challenges and solutions[C]∥Laser Congress 2021(ASSL,LAC), (Optica Publishing Group, 2021):JTu1A.20.
Get Citation
Copy Citation Text
ZHAO Yanxin. Nonlinear effects and research progress of high-power ytterbium-doped fiber laser[J]. Optical Technique, 2024, 50(1): 40