Chinese Optics, Volume. 15, Issue 6, 1167(2022)

In-vivo across-scales two-photon microscopic imaging technique

Shuai CHEN1,2, Lin REN1,2, Zhen-qiao ZHOU2, Min LI2, and Hong-bo JIA1,2、*
Author Affiliations
  • 1School of Physical Science and Engineering Technology and Center for Brain and Intelligence Research, Guangxi University, Nanning 530004, China
  • 2Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
  • show less
    References(70)

    [1] DENK W, STRICKLER J H, WEBB W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 248, 73-76(1990).

    [2] JUVEKAR V, LEE H W, KIM H M. Two-photon fluorescent probes for detecting enzyme activities in live tissues[J]. ACS Applied Bio Materials, 4, 2957-2973(2021).

    [3] ZHANG K Y, CHEN SH, SUN H M, et al. In vivo two-photon microscopy reveals the contribution of Sox9+ cell to kidney regeneration in a mouse model with extracellular vesicle treatment[J]. Journal of Biological Chemistry, 295, 12203-12213(2020).

    [4] ROTH R H, CUDMORE R H, TAN H L, et al. Cortical synaptic AMPA receptor plasticity during motor learning[J]. Neuron, 105, 895-908.E5(2020).

    [5] YUSTE R, DENK W. Dendritic spines as basic functional units of neuronal integration[J]. Nature, 375, 682-684(1995).

    [6] DENK W, SVOBODA K. Photon upmanship: why multiphoton imaging is more than a gimmick[J]. Neuron, 18, 351-357(1997).

    [7] LICHTMAN J W, DENK W. The big and the small: challenges of imaging the brain’s circuits[J]. Science, 334, 618-623(2011).

    [8] [8] KEL E R. Principles of Neural Science[M]. New Yk: McGrawHill Medical, 2012.

    [9] PODOR B, HU Y L, OHKURA M, et al. Comparison of genetically encoded calcium indicators for monitoring action potentials in mammalian brain by two-photon excitation fluorescence microscopy[J]. Neurophotonics, 2, 021014(2015).

    [10] VILLETTE V, CHAVARHA M, DIMOV I K, et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice[J]. Cell, 179, 1590-1608.E23(2019).

    [11] [11] DRST C D, OERTNER T G. Imaging Synaptic Glutamate Release with TwoPhoton Microscopy in ganotypic Slice Cultures[M]DAHLMANNS J, DAHLMANNS M. Synaptic Vesicles: Methods Protocols. New Yk: Humana, 2022: 205219.

    [12] KOEKKOEK L L, SLOMP M, CASTEL J, et al. Disruption of lateral hypothalamic calorie detection by a free choice high fat diet[J]. FASEB Journal, 35, e21804(2021).

    [13] ROY R K, ALTHAMMER F, SEYMOUR A J, et al. Inverse neurovascular coupling contributes to positive feedback excitation of vasopressin neurons during a systemic homeostatic challenge[J]. Cell Reports, 37, 109925(2021).

    [14] LICHTMAN J W, CONCHELLO J A. Fluorescence microscopy[J]. Nature Methods, 2, 910-919(2005).

    [15] ZIPFEL W R, WILLIAMS R M, WEBB W W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 21, 1369-1377(2003).

    [16] XU C, WEBB W W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm[J]. Journal of the Optical Society of America B, 13, 481-491(1996).

    [17] HELMCHEN F, DENK W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005).

    [18] SVOBODA K, BLOCK S M. Biological applications of optical forces[J]. Annual Review of Biophysics and Biomolecular Structure, 23, 247-285(1994).

    [19] SQUIRRELL J M, WOKOSIN D L, WHITE J G, et al. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability[J]. Nature Biotechnology, 17, 763-767(1999).

    [20] SO P T, DONG C Y, MASTERS B R, et al. Two-photon excitation fluorescence microscopy[J]. Annual Review of Biomedical Engineering, 2, 399(2000).

    [21] PATTERSON G H, PISTON D W. Photobleaching in two-photon excitation microscopy[J]. Biophysical Journal, 78, 2159-2162(2000).

    [22] HOPT A, NEHER E. Highly nonlinear photodamage in two-photon fluorescence microscopy[J]. Biophysical Journal, 80, 2029-2036(2001).

    [23] KUCHIBHOTLA K V, GILL J V, LINDSAY G W, et al. Parallel processing by cortical inhibition enables context-dependent behavior[J]. Nature Neuroscience, 20, 62-71(2017).

    [24] STRINGER C, PACHITARIU M, STEINMETZ N, et al. High-dimensional geometry of population responses in visual cortex[J]. Nature, 571, 361-365(2019).

    [25] YANG M K, ZHOU ZH Q, ZHANG J X, et al. MATRIEX imaging: multiarea two-photon real-time in vivo explorer[J]. Light:Science & Applications, 8, 109(2019).

    [26] LECOQ J, SAVALL J, VUČINIĆ D, et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging[J]. Nature Neuroscience, 17, 1825-1829(2014).

    [27] KIM T H, SCHNITZER M J. Fluorescence imaging of large-scale neural ensemble dynamics[J]. Cell, 185, 9-41(2022).

    [28] STIRMAN J N, SMITH I T, KUDENOV M W, et al. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain[J]. Nature Biotechnology, 34, 857-862(2016).

    [29] CLOUGH M, CHEN I A, PARK S W, et al. Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds[J]. Nature Communications, 12, 6638(2021).

    [30] YU CH H, STIRMAN J N, YU Y Y, et al. Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry[J]. Nature Communications, 12, 6639(2021).

    [31] SOFRONIEW N J, FLICKINGER D, KING J, et al. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging[J]. eLife, 5, e14472(2016).

    [32] YAO J, GAO Y F, YIN Y X, et al. Exploiting the potential of commercial objectives to extend the field of view of two-photon microscopy by adaptive optics[J]. Optics Letters, 47, 989-992(2022).

    [33] YAO J, WU T, YE SH W, . Off-axis parabolic mirror afocal scanning system extends the imaging area of two-photon microscopy[J]. Acta Laser Biology Sinica, 29, 217-224(2020).

    [34] PAPAGIAKOUMOU E, RONZITTI E, EMILIANI V. Scanless two-photon excitation with temporal focusing[J]. Nature Methods, 17, 571-581(2020).

    [35] GAO Y F, XIA X Y, LIU L N, et al. Axial gradient excitation accelerates volumetric imaging of two-photon microscopy[J]. Photonics Research, 10, 687-696(2022).

    [36] SONG A, CHARLES A S, KOAY S A, et al. Volumetric two-photon imaging of neurons using stereoscopy (vTwINS)[J]. Nature Methods, 14, 420-426(2017).

    [37] DEMAS J, MANLEY J, TEJERA F, et al. High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy[J]. Nature Methods, 18, 1103-1111(2021).

    [38] ZHANG T, HERNANDEZ O, CHRAPKIEWICZ R, et al. Kilohertz two-photon brain imaging in awake mice[J]. Nature Methods, 16, 1119-1122(2019).

    [39] KAZEMIPOUR A, NOVAK O, FLICKINGER D, et al. Kilohertz frame-rate two-photon tomography[J]. Nature Methods, 16, 778-786(2019).

    [40] WU J L, LIANG Y J, CHEN SH, et al. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo[J]. Nature Methods, 17, 287-290(2020).

    [41] WU J L, XU Y Q, XU J J, et al. Ultrafast laser-scanning time-stretch imaging at visible wavelengths[J]. Light:Science & Applications, 6, e16196(2017).

    [42] KARPF S, RICHE C T, DI CARLO D, et al. Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates[J]. Nature Communications, 11, 2062(2020).

    [43] JUNG J C, MEHTA A D, AKSAY E, et al. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy[J]. Journal of Neurophysiology, 92, 3121-3133(2004).

    [44] BOCARSLY M E, JIANG W CH, WANG CH, et al. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain[J]. Biomedical Optics Express, 6, 4546-4556(2015).

    [45] ANTONINI A, SATTIN A, MORONI M, et al. Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness[J]. eLife, 9, e58882(2020).

    [46] QIN ZH Y, CHEN C P, HE S C, et al. Adaptive optics two-photon endomicroscopy enables deep-brain imaging at synaptic resolution over large volumes[J]. Science Advances, 6, eabc6521(2020).

    [47] OHEIM M, BEAUREPAIRE E, CHAIGNEAU E, et al. Two-photon microscopy in brain tissue: parameters influencing the imaging depth[J]. Journal of Neuroscience Methods, 111, 29-37(2001).

    [48] THEER P, HASAN M T, DENK W. Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti∶Al2O3 regenerative amplifier[J]. Optics Letters, 28, 1022-1024(2003).

    [49] STREICH L, BOFFI J C, WANG L, et al. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy[J]. Nature Methods, 18, 1253-1258(2021).

    [50] JI N. Adaptive optical fluorescence microscopy[J]. Nature Methods, 14, 374-380(2017).

    [51] LIU H J, DENG X Q, TONG SH, et al. In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots[J]. Nano Letters, 19, 5260-5265(2019).

    [52] INAVALLI V V G K, LENZ M O, BUTLER C, et al. A super-resolution platform for correlative live single-molecule imaging and STED microscopy[J]. Nature Methods, 16, 1263-1268(2019).

    [53] FÜRSTENBERG A, HEILEMANN M. Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores[J]. Physical Chemistry Chemical Physics, 15, 14919-14930(2013).

    [54] [54] REGO E H, SHAO L. Practical Structured Illumination Microscopy[M]VERVEER P J. Advanced Fluescence Microscopy: Methods Protocols. New Yk: Humana Press, 2015: 175192.

    [55] SCHRADER M, MEINECKE F, BAHLMANN K, et al. Monitoring the excited state of a fluorophore in a microscope by stimulated emission[J]. Bioimaging, 3, 147-153(1995).

    [56] RITTWEGER E, HAN K Y, IRVINE S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 3, 144-147(2009).

    [57] BIANCHINI P, DIASPRO A. Fast scanning STED and two-photon fluorescence excitation microscopy with continuous wave beam[J]. Journal of Microscopy, 245, 225-228(2012).

    [58] BIANCHINI P, HARKE B, GALIANI S, et al. Single-wavelength two-photon excitation–stimulated emission depletion (SW2PE-STED) superresolution imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 6390-6393(2012).

    [59] LI Y, LIU SH J, SUN D Q, et al. Single-layer multitasking vortex-metalens for ultra-compact two-photon excitation STED endomicroscopy imaging[J]. Optics Express, 29, 3795-3807(2021).

    [60] LI Z W, HOU J, SUO J L, et al. Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy[J]. Optics Express, 25, 32010-32020(2017).

    [61] URBAN B E, YI J, CHEN S Y, et al. Super-resolution two-photon microscopy via scanning patterned illumination[J]. Physical Review E, 91, 042703(2015).

    [62] ZHENG W, WU Y C, WINTER P, et al. Adaptive optics improves multiphoton super-resolution imaging[J]. Nature Methods, 14, 869-872(2017).

    [63] SUN SH Y, HE M F, ZHANG ZH M, et al. Enhancing the axial resolution of two-photon imaging[J]. Applied Optics, 58, 4892-4897(2019).

    [64] YE SH W, YIN Y X, YAO J, et al. Axial resolution improvement of two-photon microscopy by multi-frame reconstruction and adaptive optics[J]. Biomedical Optics Express, 11, 6634-6648(2020).

    [65] ZONG W J, WU R L, LI M L, et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice[J]. Nature Methods, 14, 713-719(2017).

    [66] OZBAY B N, FUTIA G L, MA M, et al. Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning[J]. Scientific Reports, 8, 8108(2018).

    [67] HENDRIKS B H W, KUIPER S, VAN AS M A J, et al. Electrowetting-based variable-focus lens for miniature systems[J]. Optical Review, 12, 255-259(2005).

    [68] ZONG W J, OBENHAUS H A, SKYTØEN E R, et al. Large-scale two-photon calcium imaging in freely moving mice[J]. Cell, 185, 1240-1256.E30(2022).

    [69] LOTT G E, MARCINIAK M A, BURKE J H. Three-dimensional imaging of trapped cold atoms with a light field microscope[J]. Applied Optics, 56, 8738-8745(2017).

    [70] STEFANOIU A, SCROFANI G, SAAVEDRA G, et al. What about computational super-resolution in fluorescence Fourier light field microscopy?[J]. Optics Express, 28, 16554-16568(2020).

    CLP Journals

    [1] Qiang FU, Zhi-miao ZHANG, Shang-nan ZHAO, Yang LIU, Yang DONG. Research progress of miniature head-mounted single photon fluorescence microscopic imaging technique[J]. Chinese Optics, 2023, 16(5): 1010

    Tools

    Get Citation

    Copy Citation Text

    Shuai CHEN, Lin REN, Zhen-qiao ZHOU, Min LI, Hong-bo JIA. In-vivo across-scales two-photon microscopic imaging technique[J]. Chinese Optics, 2022, 15(6): 1167

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: Apr. 29, 2022

    Accepted: --

    Published Online: Feb. 9, 2023

    The Author Email:

    DOI:10.37188/CO.2022-0086

    Topics