Optics and Precision Engineering, Volume. 33, Issue 12, 1984(2025)
Improved lightweight garbage detection method for YOLOv8n in complex environments
[1] YU Q, SHEN D S, XING X J et al. Microbial contamination characteristics and health risk assessment of residential domestic garbage room and surrounding environment[J]. Acta Scientiae Circumstantiae, 44, 477-487(2024).
于锵, 沈东升, 邢筱静. 居民区生活垃圾房及周边环境的微生物污染特征与健康风险评估[J]. 环境科学学报, 44, 477-487(2024).
[2] LUO Z C, HE C T, CHEN D J et al. Passion fruit rapid detection model based on lightweight YOLO v8s-GD[J]. Transactions of the Chinese Society for Agricultural Machinery, 55, 291-300(2024).
罗志聪, 何陈涛, 陈登捷. 基于轻量化YOLO v8s-GD的自然环境下百香果快速检测模型[J]. 农业机械学报, 55, 291-300(2024).
[3] ZHANG X Y, HU G R, LI P H et al. Recognizing safflower using improved lightweight YOLOv8n[J]. Transactions of the Chinese Society of Agricultural Engineering, 40, 163-170(2024).
张新月, 胡广锐, 李浦航. 基于改进YOLOv8n的轻量化红花识别方法[J]. 农业工程学报, 40, 163-170(2024).
[4] HUANG D D, GAO H, LIU ZH et al. Lightweight target detection network for UAV platforms[J]. Opt. Precision Eng., 31, 3021-3033(2023).
黄丹丹, 高晗, 刘智. 面向无人机平台的轻量化目 标检测网络[J]. 光学 精密工程, 31, 3021-3033(2023).
[5] LIANG L M, LONG P W, FENG Y et al. Improving the lightweight VTG-YOLOv7-tiny for steel surface defect detection[J]. Opt. Precision Eng., 32, 1227-1240(2024).
梁礼明, 龙鹏威, 冯耀. 改进轻量化VTG-YOLOv7-tiny的钢材表面缺陷检测[J]. 光学 精密工程, 32, 1227-1240(2024).
[6] ZENG T H, LI S Y, SONG Q M et al. Lightweight tomato real-time detection method based on improved YOLO and mobile deployment[J]. Computers and Electronics in Agriculture, 205, 107625(2023).
[7] 周颖, 许士博, 陈海永. 融合多尺度特征与注意力的太阳能电池表面缺陷检测[J]. 光学 精密工程, 32, 2286-2298(2024).
ZHOU Y, XU S B, CHEN H Y et al. Solar cell defect detection network combining multiscale feature and attention[J]. Opt. Precision Eng., 32, 2286-2298(2024).
[8] 蔡逢煌, 张家翔, 黄捷. 基于图像低维特征融合的航拍小目标检测模型[J]. 模式识别与人工智能, 37, 162-171(2024).
CAI F H, ZHANG J X, HUANG J. Model for small object detection in aerial photography based on low dimensional image feature fusion[J]. Pattern Recognition and Artificial Intelligence, 37, 162-171(2024).
[9] LIN S L, ZHANG X, CHEN Y et al. Integrating global information and dual-domain attention mechanism for optical remote sensing aircraft target detection[J]. Opt. Precision Eng., 32, 3085-3098(2024).
林珊玲, 张雪, 陈燕. 融合全局信息与双域注意力机制的光学遥感飞机目标检测[J]. 光学 精密工程, 32, 3085-3098(2024).
[10] PROENÇA P F, SIMÕES P. Taco: Trash annotations in context for litter detection[J]. arXiv Preprint arXiv, 2020(2003).
[11] WANG Q L, WU B G, ZHU P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 13, 11534-11542(2020).
[12] 张倡倡, 吕卫东, 蔡子杰. 基于域泛化的轻量化图像分类算法[J]. 计算机工程, 51, 182-189(2025).
ZHANG C C, LÜ W D, CAI Z J et al. Lightweight image classification algorithm based on domain generalization[J]. Computer Engineering, 51, 182-189(2025).
[13] CAI X H, LAI Q X, WANG Y W et al. Poly kernel inception network for remote sensing detection[C]. WA, 27706-27716(2024).
[14] LI C, ZHOU A J, YAO A B. Omni-dimensional dynamic convolution[J]. arXiv Preprint arXiv: 2209, 2022(07947).
[15] TONG Z, CHEN Y, XU Z et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv Preprint arXiv: 23, 10051, 2023(01).
[16] ZHU X K, LYU S C, WANG X et al. TPH-YOLOv5: Improved YOLOv5 based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios[C], 11, 2778-2788(2021).
[17] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C], 7464-7475(2023).
[18] JI B, XU J F, LIU Y et al. Improved YOLOv8 for small traffic sign detection under complex environmental conditions[J]. Franklin Open, 8, 100167(2024).
[19] HOWARD A, SANDLER M, CHEN B et al. Searching for MobileNetV3[C], 1314-1324(2019).
[20] HU J, SHEN L, SUN G. Squeeze-and-excitation Networks[C], 7132-7141(2018).
[21] HAN K, WANG Y H, TIAN Q et al. GhostNet: more features from cheap operations[C], 1577-1586(2020).
[22] MA N N, ZHANG X Y, ZHENG H T et al[M]. ShuffleNet V2: Practical Guidelines for Efficient Cnn Architecture Design, 122-138(2018).
[23] TAN M, LE Q V. EfficientNetV2: smaller models and faster training[C], 10096-10106(2021).
[24] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C], 13708-13717(2021).
[25] OUYANG D L, HE S, ZHANG G Z et al. Efficient multi-scale attention module with cross-spatial learning[C], 1-5(2023).
[27] PARK J, LEE J Y et al. CBAM: convolutional block attention module[C], 3-19(2018).
[28] GEVORGYAN Z. SIoU loss: More powerful learning for bounding box regression[J]. arXiv Preprint arXiv: 2205, 2022(12740).
[126] LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[J]. arXiv: 2112, 2021(05561).
Get Citation
Copy Citation Text
Shizheng SUN, Lingling HE, Shuai ZHENG, Zeyin HE. Improved lightweight garbage detection method for YOLOv8n in complex environments[J]. Optics and Precision Engineering, 2025, 33(12): 1984
Category:
Received: Dec. 4, 2024
Accepted: --
Published Online: Aug. 15, 2025
The Author Email: Shizheng SUN (ssz091011@163.com)