Journal of Advanced Dielectrics, Volume. 14, Issue 4, 2440010(2024)
High energy storage properties of (Nb
[1] H. Ogihara, C. A. Randall, S. Trolier-McKinstry. High-energy density capacitors utilizing 0.7 BaTiO3–0.3 BiScO3 ceramics. J. Am. Ceram. Soc., 92, 1719(2009).
[2] N. H. Fletcher, A. D. Hilton, B. W. Rivketts. Optimization of energy storage density in ceramic capacitors. J. Phys. D: Appl. Phys., 29, 253(1996).
[3] J. Li et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater., 19, 999(2020).
[4] Z. Yao et al. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater., 29, 1601727(2017).
[5] Z. Dai et al. Enhanced energy storage properties and stability of Sr(Sc0.5Nb0.5)O3 modified 0.65BaTiO3–0.35Bi0.5Na0.5TiO3 ceramics. Chem. Eng. J., 397, 125520(2020).
[6] Y. Zhao, X. Hao, Q. Zhang. Energy-storage properties and electrocaloric effect of Pb(1−3x∕2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces, 6, 11633(2014).
[7] X. Hao. A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr., 03, 1330001(2013).
[8] W. J. S. Javaid, R. Laghari. Energy-storage pulsed-power capacitor technology. IEEE Trans. Power Electron., 7, 251(1992).
[9] Y. Ding et al. Realizing high-performance capacitive energy storage in lead-free relaxor ferroelectrics via synergistic effect design. J. Eur. Ceram. Soc., 42, 129(2022).
[10] C. Wang et al. Ultrahigh energy storage density in Ba0.85 Ca0.15Zr0.1Ti0.9O3-based lead-free ceramics by introducing a relaxor end-member. J. Eur. Ceram. Soc., 43, 6844(2023).
[11] F. Si, B. Tang, Z. Fang, H. Li, S. Zhang. A new type of BaTiO3-based ceramics with Bi(Mg1∕2Sn1∕2)O3 modification showing improved energy storage properties and pulsed discharging performances. J. Alloys Compd., 819, 153004(2020).
[12] H. Xie et al. Enhanced energy storage properties under low electric fields in (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics via a synergistic optimization strategy. Chem. Eng. J., 450, 138432(2022).
[13] A. Young, G. Hilmas, S. C. Zhang, R. W. Schwartz. Effect of liquid-phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc., 90, 1504(2007).
[14] Y. H. Huang, Y. J. Wu, W. J. Qiu, J. Li, X. M. Chen. Enhanced energy storage density of Ba0.4Sr0.6TiO3–MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc., 35, 1469(2015).
[15] D. Han et al. Superior energy storage properties of (1−x)Ba0.85Ca0.15Zr0.1Ti0.9O3–xBi(Mg2∕3Ta1∕3)O3 lead-free ceramics. J. Alloys Compd., 946, 169300(2023).
[16] Z. Dai et al. Improved energy storage density and efficiency of (1−x)Ba0.85Ca0.15Zr0.1Ti0.9O3–xBiMg2∕3Nb1∕3O3 lead-free ceramics. Chem. Eng. J., 410, 128341(2021).
[17] P. Yang, L. Li, S. Yu, W. Peng, K. Xu. Ultrahigh and field-independent energy storage efficiency of (1−x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3–xBi(Mg0.5Ti0.5)O3 ceramics. Ceram. Int., 47, 3580(2021).
[18] Y. Zhao et al. High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5 Nb0.5)4+ complex-ion. J. Alloys Compd., 666, 209(2016).
[19] Y. Zhao et al. High energy storage properties and dielectric behavior of (Bi0.5Na0.5)0.94Ba0.06Ti1−x(Al0.5Nb0.5)xO3 lead-free ferroelectric ceramics. Ceram. Int., 42, 2221(2016).
[20] M. Zhou et al. High energy storage properties of (Ni1∕3Nb2∕3)4+ complex-ion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics. Mater. Res. Bull., 98, 166(2018).
[21] S.-Y. Chu, T.-Y. Chen, I. T. Tsai, W. Water. Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device. Sens. Actuators A Phys., 113, 198(2004).
[22] K. Kumar, B. Kumar. Effect of Nb-doping on dielectric, ferroelectric and conduction behaviour of lead free Bi0.5(Na0.5K0.5)0.5TiO3 ceramic. Ceram. Int., 38, 1157(2012).
[23] P. Parjansri, U. Intatha, S. Eitssayeam. Dielectric, ferroelectric and piezoelectric properties of Nb5+ doped BCZT ceramics. Mater. Res. Bull., 65, 61(2015).
[24] T. Shao et al. Potassium-sodium niobate based lead-free ceramics: Novel electrical energy storage materials. J. Mater. Chem. A, 5, 554(2017).
[25] H. Abdmouleh, I. Kriaa, N. Abdelmoula, Z. Sassi, H. Khemakhem. The effect of Zn2+ and Nb5+ substitution on structural, dielectric, electrocaloric properties, and energy storage density of Ba0.95Ca0.05Ti0.95Zr0.05O3 ceramics. J. Alloys Compd., 878, 160355(2021).
[26] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Cryst., 32, 751(1976).
[27] W. Liu, X. Ren. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett., 103, 257602(2009).
[28] F. Yan et al. Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy. Nano Energy, 75, 105012(2020).
[29] Y. Chen et al. La2O3-modified BiYbO3–Pb(Zr,Ti)O3 ternary piezoelectric ceramics with enhanced electrical properties and thermal depolarization temperature. J. Adv. Ceram., 12, 1593(2023).
[30] Y. Chen, H. Zhou, Q. Wang, J. Zhu. Doping level effects in Gd/Cr co-doped Bi3TiNbO9 Aurivillius-type ceramics with improved electrical properties. J. Materiomics, 8, 906(2022).
[31] Q. Zhang, Y. Zhang, X. Wang, T. Ma, Z. Yuan. Influence of sintering temperature on energy storage properties of BaTiO3–(Sr1−1.5xBi)TiO3 ceramics. Ceram. Int., 38, 4765(2012).
[32] T. Wang et al. Relaxor ferroelectric BaTiO3–Bi(Mg2∕3Nb1∕3)O3 ceramics for energy storage application. J. Am. Ceram. Soc., 98, 559(2015).
[33] S. Xiu et al. Effect of rare-earth additions on the structure and dielectric energy storage properties of BaxSr1−xTiO3-based barium boronaluminosilicate glass-ceramics. J. Alloys Compd., 670, 217(2016).
[34] G. R. T. Tunkasiri. Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett., 15, 1767(1996).
[35] F. Li, L. Jin, R. Guo. High electrostrictive coefficient Q33 in lead-free Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoelectric ceramics. Appl. Phys. Lett., 105, 232903(2014).
[36] A. A. Bokov, Z. G. Ye. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci., 41, 31(2006).
[37] A. R. Jayakrishnan, P. V. Karthik Yadav, J. P. B. Silva, K. C. Sekhar. Microstructure tailoring for enhancing the energy storage performance of 0.98[0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)TiO3]–0.02BiZn1∕2Ti1∕2O3 ceramic capacitors. J. Sci.-Adv. Mater. Dev., 5, 119(2020).
[38] D.-Y. Lu, Y. Liang. Valence states and dielectric properties of fine-grained BaTiO3 ceramics co-doped with double valence-variable europium and chromium. Ceram. Int., 44, 14717(2018).
[39] D. Hu et al. Optimization the energy density and efficiency of BaTiO3-based ceramics for capacitor applications. Chem. Eng. J., 409, 127375(2021).
[40] L. Wen, J. Chen, J. Liang, F. Li, H.-M. Cheng. Polymer nanocomposite dielectrics for electrical energy storage. Natl. Sci. Rev., 4, 20(2017).
[41] G. R. Love. Energy storage in ceramic dielectrics. J. Am. Ceram. Soc., 73, 323(1990).
[42] B. Chu et al. A dielectric polymer with high electric energy density and fast discharge speed. Science, 313, 334(2006).
[43] S. Chen, X. Wang, T. Yang, J. Wang. Composition-dependent dielectric properties and energy storage performance of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics. J. Electroceramics, 32, 307(2014).
[44] X. Qiao et al. Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J., 388, 124158(2020).
[45] L. Yang et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 102, 72(2019).
[46] X. Chou, J. Zhai, X. Yao. Relaxor behavior and dielectric properties of La2O3-doped barium zirconium titanate ceramics for tunable device applications. Mater. Chem. Phys., 109, 125(2008).
[47] X. G. Tang, K. H. Chew, H. L. W. Chan. Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics. Acta Mater., 52, 5177(2004).
[48] D. Meng et al. Realising high comprehensive energy storage performance of BaTiO3-based perovskite ceramics via La(Zn1∕2Hf1∕2)O3 modification. Ceram. Int., 48, 16173(2022).
[49] G. Yan et al. Achieving high pulse charge–discharge energy storage properties and temperature stability of (Ba0.98−xLi0.02Lax)(Mg0.04Ti0.96)O3 lead-free ceramics via bandgap and defect engineering. Chem. Eng. J., 450, 137814(2022).
[50] B. Bi, C. H. Yang, Q. Yao, J. H. Song, X. S. Sun. Microstructure, leakage current and dielectric tunability properties of W6+:Na0.5Bi0.5TiO3/Fe3+:Na0.5Bi0.5TiO3 bilayered thin film. Mater Technol., 31, 860(2016).
[51] Y. Sudo, M. Hagiwara, S. Fujihara. Grain size effect on electrical properties of Mn-modified 0.67BiFeO3–0.33BaTiO3 lead-free piezoelectric ceramics. Ceram. Int., 42, 8206(2016).
[52] C. Sun et al. Simultaneously with large energy density and high efficiency achieved in NaNbO3-based relaxor ferroelectric ceramics. J. Eur. Ceram. Soc., 41, 1891(2021).
[53] J. Jiang, T. J. Zhang, B. S. Zhang, H. Mao. Complex impedance analysis of Ba0.65Sr0.35TiO3 ceramics. J. Electroceramics, 21, 258(2007).
[54] I. Ahmad, M. J. Akhtar, M. M. Hasan. Impedance spectroscopic investigation of electro active regions, conduction mechanism and origin of colossal dielectric constant in Nd1−xSrx FeO3 (0.1≤x≤0.5). Mater. Res. Bull., 60, 474(2014).
[55] Z. Wang et al. Low temperature sintering and dielectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3–xCu2+ ceramics obtained by the sol–gel technique. Ceram. Int., 42, 18037(2016).
[56] H. Gong, X. Wang, S. Zhang, H. Wen, L. Li. Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3 ceramics for MLCCs. J. Eur. Ceram. Soc., 34, 1733(2014).
[57] X. Guo, J. Fleig, J. Maier. Separation of electronic and ionic contributions to the grain boundary conductivity in acceptor-doped SrTiO3. J. Electrochem. Soc., 148, 50(2001).
[58] J. Jamnik, J. Maier. Treatment of the impedance of mixed conductors equivalent circuit model and explicit approximate solutions. J. Electrochem. Soc., 146, 4183(1999).
[59] M. A. Rafiq, M. N. Rafiq, K. Venkata Saravanan. Dielectric and impedance spectroscopic studies of lead-free barium–calcium–zirconium–titanium oxide ceramics. Ceram. Int., 41, 11436(2015).
[60] Y. Chen et al. Diffused phase transition, ionic conduction mechanisms and electric-field dependent ferroelectricity of Nb/Ce co-doped Pb(Zr0.52Ti0.48)O3 ceramics. J. Alloys Compd., 854, 155500(2021).
[61] Y. Chen et al. Dielectric abnormality and ferroelectric asymmetry in W/Cr co-doped Bi4Ti3O12 ceramics based on the effect of defect dipoles. J. Alloys Compd., 696, 746(2017).
[62] F. Li, M. Zhou, J. Zhai, B. Shen, H. Zeng. Novel barium titanate based ferroelectric relaxor ceramics with superior charge–discharge performance. J. Eur. Ceram. Soc., 38, 4646(2018).
[63] Q. Yuan, F. Yao, Y. Wang, R. Ma, H. Wang. Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C, 5, 9552(2017).
[64] Q. Hu et al. Symmetry changes during relaxation process and pulse discharge performance of the BaTiO3–Bi(Mg1∕2Ti1∕2)O3 ceramic. J. Appl. Phys., 124, 054101(2018).
[65] D. Wang et al. Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A, 6, 4133(2018).
[66] M. Zhou, R. Liang, Z. Zhou, X. Dong. Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C, 6, 8528(2018).
[67] N. Sun, Y. Li, Q. Zhang, X. Hao. Giant energy-storage density and high efficiency achieved in (Bi0.5Na0.5)TiO3–Bi(Ni0.5Zr0.5)O3 thick films with polar nanoregions. J. Mater. Chem. C, 6, 10693(2018).
Get Citation
Copy Citation Text
Yaqiong Sun, Santan Dang, Zhanhui Peng, Bi Chen, Yibing Zhang, Di Wu, Pengfei Liang, Lingling Wei, Xiaolian Chao, Zupei Yang. High energy storage properties of (Nb
Category: Research Articles
Received: Jan. 18, 2024
Accepted: Mar. 30, 2024
Published Online: Nov. 5, 2024
The Author Email: Peng Zhanhui (pzh@snnu.edu.cn), Chao Xiaolian (chaoxl@snnu.edu.cn), Yang Zupei (yangzp@snnu.edu.cn)