Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0612003(2025)

Lubricating Oil Wear Particle Detection Technology Based on Telecentric Imaging and Random Forest

Zhuoran Cao*, Fajie Duan, Xiao Fu, and Guangyue Niu
Author Affiliations
  • The State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(12)
    Structural diagram of wear particle image detection system
    Flowchart of wear particle classification algorithm
    Calculation process of curvature
    Physical image of experimental platform
    Wear particle images and boundary images. (a)‒(c) Original collected images; (d) normal particle; (e) fatigue particle; (f) cutting particle; (g) sphere particle
    Impact of number of decision trees on classification accuracy
    Impact of number of features on classification accuracy
    Confusion matrix of classification result
    • Table 1. Features of wear particle

      View table

      Table 1. Features of wear particle

      ParameterDescription
      Area A
      Perimeter P
      Equivalent diameter DD=4Aπ
      Aspect ratio ARAR=ba
      Roundness RoRo=4AπP2
      Convexity CoCo=PcP
      Solidity SoSo=AAc
      Curvature kimθi-1m=arctanyi-yi-m-1xi-xi-m-1θi+1m=arctanyi+m+1-yixi+m+1-xikim=θi+1m-θi-1m
    • Table 2. Comparison of system parameters

      View table

      Table 2. Comparison of system parameters

      System nameField size /(mm×mm)Flow channel depth /mm
      Telecentric imaging system2.1×1.80.2
      Microscopic imaging system0.9×0.70.1
    • Table 3. Partial feature data of four types of wear particles

      View table

      Table 3. Partial feature data of four types of wear particles

      CategoryARRoCoSoKμKσ
      Normal0.51580.77970.98570.960514.025921.7580
      Fatigue0.76780.62030.89750.855112.375034.5541
      Cutting0.46340.40440.90640.625914.545529.4525
      Sphere0.93540.97300.99220.987112.413715.0442
    • Table 4. Comparison of classification accuracy

      View table

      Table 4. Comparison of classification accuracy

      Classification algorithmClassification accuracy /%
      RF93.75
      SVM87.50
      KNN76.25
    Tools

    Get Citation

    Copy Citation Text

    Zhuoran Cao, Fajie Duan, Xiao Fu, Guangyue Niu. Lubricating Oil Wear Particle Detection Technology Based on Telecentric Imaging and Random Forest[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0612003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Aug. 7, 2024

    Accepted: Aug. 28, 2024

    Published Online: Mar. 12, 2025

    The Author Email:

    DOI:10.3788/LOP241819

    CSTR:32186.14.LOP241819

    Topics