Water Purification Technology, Volume. 44, Issue 7, 78(2025)
Nitrogen Removal Performance and Membrane Fouling Behavior of Sulfur Autotrophic Dynamic MBR
[5] [5] SONG O H, ZHOU Y, LI M A, et al. Selective removal of nitrate by using a novel macroporous acrylic anion exchange resin[J]. Chinese Chemical Letters, 2012, 23(5): 603-606.
[9] [9] MCADAM E, JUDD S. A review of membrane bioreactor potential for nitrate removal from drinking water[J]. Desalination, 2006, 196(1): 135-148.
[10] [10] SAHINKAYA E, YURTSEVER A, AKTA , et al. Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor[J]. Chemical Engineering Journal, 2015, 268: 180-186. DOI: 10.1016/j.cej.2015.01.045.
[11] [11] VO T K Q, LEE J J, KANG J S, et al. Nitrogen removal by sulfur-based carriers in a membrane bioreactor (MBR)[J]. Membranes, 2018, 8(4): 115-115.
[12] [12] ZLEM D, DILEK A A, BEDIA , et al. Impact of temperature and biomass augmentation on biosulfur-driven autotrophic denitrification in membrane bioreactors treating real nitrate-contaminated groundwater[J]. Science of the Total Environment, 2022, 853: 158470. DOI: 10.1016/j.scitotenv.2022.158470.
[13] [13] YANG Y, ZANG Y, HU Y S, et al. Upflow anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment at room temperature and short HRTs: Process characteristics and practical applicability[J]. Chemical Engineering Journal, 2020, 383: 123186. DOI: 10.1016/j.cej.2019.123186.
[14] [14] ERSAHIN E M, OZGUN H, DERELI K R, et al. A review on dynamic membrane filtration: Materials, applications and future perspectives[J]. Bioresource Technology, 2012, 122: 196-206. DOI: 10.1016/j.biortech.2013.03.086.
[15] [15] ADAV S S, LEE D J. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 1120-1126. DOI: 10.1016/j.jhazmat.2007.11.058.
[16] [16] DUBOIS M, GILLES A K, HAMILTON K J, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 2002, 28(3): 350-356.
[17] [17] DAUGHADAY W H, LOWRY O H, ROSEBROUGH N J, et al. Determination of cerebrospinal fluid protein with the folin phenol reagent[J]. Journal of Laboratory and Clinical Medicine, 1952, 39(4): 663-665.
[20] [20] WANG H C, LIU Y, YANG Y M, et al. Element sulfur-based autotrophic denitrification constructed wetland as an efficient approach for nitrogen removal from low C/N wastewater[J]. Water Research, 2022, 226: 119258. DOI: 10.1016/j.watres.2022.119258.
[22] [22] YANG Y, CHEN T, MORRISON L, et al. Nanostructured pyrrhotite supports autotrophic denitrification for simultaneous nitrogen and phosphorus removal from secondary effluents[J]. Chemical Engineering Journal, 2017, 328: 511-518. DOI: 10.1016/j.cej.2017.07.061.
[23] [23] ZHAN M, ZENG W, WU C, et al. Impact of organic carbon on sulfide-driven autotrophic denitrification: Insights from isotope fractionation and functional genes[J]. Water Research, 2024, 255: 121507. DOI: 10.1016/j.watres.2024.121507.
[24] [24] QIU Y Y, GONG X Z, ZHANG L, et al. Achieving a novel polysulfide-involved sulfur-based autotrophic denitrification process for high-rate nitrogen removal in elemental sulfur-packed bed reactors[J]. ACS ES&T Engineering, 2022, 2(8): 1504-1513.
[25] [25] WANG Y M, XIE S K, ZHOU J, et al. Sulfur cycle contributes to stable autotrophic denitrification and lower N2O accumulation in electrochemically integrated constructed wetlands: Electron transfers patterns and metagenome insights[J]. Chemical Engineering Journal, 2023, 451: 138658. DOI: 10.1016/j.cej.2022.138658.
[26] [26] CHEN D, CHEN X, HUANG X, et al. Controlling denitrification accompanied with nitrite accumulation at the sediment-water interface[J]. Ecological Engineering, 2017, 100: 194-198. DOI: 10.1016/j.ecoleng.2016.12.019.
[27] [27] ZHANG L L, ZHANG C, HU C Z, et al. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: Performance and bacterial community structure[J]. Applied Microbiology and Biotechnology, 2015, 99(6): 2815-2827.
[28] [28] GUGLIELMI G, CHIARANI D, JUDD S J, et al. Flux criticality and sustainability in a hollow fibre submerged membrane bioreactor for municipal wastewater treatment[J]. Journal of Membrane Science, 2006, 289(1): 241-248.
[29] [29] KUBERKAR T V, DAVIS H R. Modeling of fouling reduction by secondary membranes[J]. Journal of Membrane Science, 2000, 168(1/2): 243-258. DOI: 10.1016/S0376-7388(99)00324-5.
[30] [30] AN Y, WANG Z, WU Z, et al. Characterization of membrane foulants in an anaerobic non-woven fabric membrane bioreactor for municipal wastewater treatment[J]. Chemical Engineering Journal, 2009, 155(3): 709-715.
[31] [31] UCAR D, YILMAZ T, CAPUA D F, et al. Comparison of biogenic and chemical sulfur as electron donors for autotrophic denitrification in sulfur-fed membrane bioreactor (SMBR)[J]. Bioresource Technology, 2020, 299: 122574. DOI: 10.1016/j.biortech.2019.122574.
Get Citation
Copy Citation Text
GU Xu, YU Sicheng, CHEN Zhihao, PU Yingfei, CHENG Hong, WANG Jing, ZHOU Zhongbo. Nitrogen Removal Performance and Membrane Fouling Behavior of Sulfur Autotrophic Dynamic MBR[J]. Water Purification Technology, 2025, 44(7): 78
Category:
Received: Mar. 31, 2024
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: ZHOU Zhongbo (1986@163.com)