Journal of Optoelectronics · Laser, Volume. 35, Issue 8, 880(2024)
Keratoconus classification algorithm based on incremental learning
[1] [1] RUBIDO J, CARRACEDO G, SUZAKI A, et al. Keratoconus: an updated review[J]. Contact Lens and Anterior Eye, 2022, 45(3): 101559.
[2] [2] SHARIF R, BAK-NIELSEN S, HJORTDAL J, et al. Pathogenesis of keratoconus: the intriguing therapeutic potential of prolactin-inducible protein[J]. Progress in Retinal and Eye Research, 2018, 67:150-167.
[4] [4] ATALAY E, ZALP O, YILDIRIM N. Advances in the diagnosis and treatment of keratoconus[J]. Therapeutic Advances in Ophthalmology, 2021, 13: 25158414211012796.
[5] [5] VINCIGUERRA R, AMBRSIO JR R, ROBERTS C J, et al. Biomechanical characterization of subclinical keratoconus without topographic or tomographic abnormalities[J]. Journal of Refractive Surgery, 2017, 33(6): 399-407.
[10] [10] LAVRIC A, POPA V, TAKAHASHI H, et al. Detecting keratoconus from corneal imaging data using machine learning[J]. IEEE Access, 2020, 8:149113-149121.
[12] [12] KIM D, HAN B. On the stability-plasticity dilemma of class-incremental learning[C] //IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-22, 2023, Vancouver, Canada. New York: IEEE, 2023: 20196-20204.
[13] [13] POLIKAR R, UPDA L, UPDA S S, et al. Learn++: an incremental learning algorithm for supervised neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2001, 31(4): 497-508.
[14] [14] HAMOOD-UR-REHMAN, ALI B, JAVED M. Data incremental learning for fault detection and classification in photovoltaic arrays[C]//2021 IEEE 13th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), August 22-25, 2021, Dallas, TX, USA. New York: IEEE, 2021: 310-315.
[15] [15] SONY S A, ZAMAN T, ISLAM M K, et al. eLearn++: An effective incremental learning approach for brain tumor detection[C]//2021 2nd International Conference for Emerging Technology(INCET), May 21-23, 2021, Belagavi, India. New York: IEEE, 2021:1-8.
[18] [18] WANG L, WU C. Dynamic imbalanced business credit evaluation based on Learn++ with sliding time window and weight sampling and FCM with multiple kernels[J]. Information Sciences, 2020, 520: 305-323.
Get Citation
Copy Citation Text
LAI Yuqing, LIU Fenglian, LI Jing, WANG Riwei, TAN Zuoping. Keratoconus classification algorithm based on incremental learning[J]. Journal of Optoelectronics · Laser, 2024, 35(8): 880
Category:
Received: Aug. 16, 2023
Accepted: Dec. 13, 2024
Published Online: Dec. 13, 2024
The Author Email: TAN Zuoping (tanzp@wzu.edu.cn)