Journal of Quantum Optics, Volume. 29, Issue 4, 40601(2023)

Suppression of Laser Intensity Noise via Optoelectronic Feedback for Optical Trappings

ZHANG Jia-yu, CHANG Hao-bo, TIAN Zhuang-zhuang, Lü Xin, LI Gang, ZHANG Peng-fei, and ZHANG Tian-cai
Author Affiliations
  • [in Chinese]
  • show less
    References(30)

    [1] [1] ROBERTSON N A, HOGGAN S, MANGAN J B, et al. Intensity stabilisation of an argon laser using an electro-optic modulator-performance and limitations[J]. Appl Phys B, 1986, 39(3):149-153. DOI: 10.1007/BF00697412.

    [2] [2] TACCHEO S, SORBELLO G, LAPORTA P, et al. Suppression of intensity noise in a diode-pumped Tm-Ho:YAG laser[J]. Opt Lett, 2000, 25(22):1642-1644. DOI: 10.1364/OL.25.001642.

    [3] [3] ZHANG J, MA H L, XIE C D, et al. Suppression of intensity noise of a laser-diode-pumped single-frequency Nd:YVO4 laser by optoelectronic control[J]. Appl Opt, 2003, 2(6):1068-1074. DOI: 10.1364/AO.42.001068.

    [4] [4] KWEE P, Willke B, DANZMANN K. Shot-noise-limited laser power stabilization with a high-power photodiode array[J]. Opt Lett, 2009, 34(19):2912-2914. DOI: 10.1364/OL.34.002912.

    [5] [5] IVANOV E N. Wide-band suppression of laser intensity noise[J]. IEEE Tran Ultrason Ferroelectr Freq Control, 2009, 56(1):22-26. DOI: 10.1109/TUFFC.2009.1001.

    [6] [6] KWEE P, WILLKE B, DANZMANN K. Laser power stabilization using optical ac coupling and its quantum and technical limits[J]. Appl Opt, 2009, 48(28):5423-5431. DOI: 10.1364/AO.48.005423.

    [7] [7] MICHAEL E A, PALLANCA L. Broadband near-to-shot-noise suppression of arbitrary cw-laser excess intensity noise in the gigahertz range[J]. Opt Lett, 2015, 40(7):1334. DOI: 10.1364/OL.40.001334.

    [8] [8] FOCK L S, KWAN A, TUCKER R S. Reduction of semiconductor laser intensity noise by feedforward compensation: experiment and theory[J]. J Lightwave Technol, 1992, 10(12):1919-1925. DOI: 10.1109/50.202819.

    [9] [9] STEFSZKY M, SILBERHORN C. Second-harmonic-enhanced feedforward laser-intensity-noise stabilization[J]. Phys Rev A, 2017, 95(5):053803. DOI: 10.1103/PhysRevA.95.053803.

    [10] [10] GRIMM R, WEIDEMLLER M, OVCHINNIKOV YURI B. Optical dipole traps for neutral atoms[J]. Adv At Mol Opt Phys, 2000, 42(1):95-170. DOI: 10.1016/S1049-250X(08)60186-X.

    [11] [11] LI N, ZHU X M, Li W, et al. Review of optical tweezers in vacuum[J]. Front Inform Technol Elect Eng, 2019, 20(5):655-673. DOI: 10.1631/FITEE.1900095.

    [12] [12] ASHKIN A. History of optical trapping and manipulation of small-neutral particle, atoms and molecules[J]. IEEE J Sel Top Quantum Electron, 2000, 6(6):841-856. DOI: 10.1109/2944.902132.

    [13] [13] ASHKIN A, DZIEDZIC J M. Optical levitation in high vacuum[J]. Appl Phys Lett, 1976, 28(6):333-335. DOI: http://doi.org/10.1063/1.88748.

    [14] [14] SAVARD T A, O’HARA K M, THOMAS J E. Laser-noise-induced heating in far-off resonance optical traps[J]. Phys Rev A, 1997, 56(2):R1095-R1098. DOI: 10.1103/PhysRevA.56.R1095.

    [15] [15] GEHM M E, O’HARA K M, SAVARD T A, et al. Dynamics of noise-induced heating in atom traps[J]. Phys Rev A, 1998, 58(5):3914. DOI: 10.1103/ PhysRevA.58.3914.

    [16] [16] DU J J, LI W F, Li G, et al. Intensity noise suppression of light field by optoelectronic feedback[J]. Optik, 2013, 124(18):3443-3445. DOI: 10.1016/j.ijleo.2012.10.029.

    [17] [17] BLATT S, MAZURENKO A, PARSONS M, et al. Low-noise optical lattices for ultracold 6Li[J]. Phys Rev A, 2015, 92(2):021402. DOI: 10.1103/PhysRevA.92.021402.

    [18] [18] LIU F, WANG C, LI L, et al. Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator[J]. Opt Laser Technol, 2013, 45(1):775-781. DOI: 10.1016/j.optlastec.2012.04.037.

    [19] [19] WANG Y, WANG K, FENTON E F, et al. Reduction of laser intensity noise over 1 MHz band for single atom trapping[J]. Opt Express, 2020, 28(21):31209. DOI: 10.1364/oe.405002.

    [20] [20] HE X, YU S, XU P, et al. Combining red and blue-detuned opticalpotentials to form a Lamb-Dicke trap fora single neutral atom[J]. Opt Express, 2012, 20(4):3711. DOI: 10.1364/OE.20.003711.

    [21] [21] GIESELER J, Deutsch B, QUIDANT R, et al. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle[J]. Phys Rev Lett, 2012, 109(10):103603. DOI: 10.1103/PhysRevLett.109.103603.

    [22] [22] LI T, KHEIFETS S, RAIZEN M G. Millikelvin cooling of an optically trapped microsphere in vacuum[J]. Nat Phys, 2011, 7(7):527-530. DOI: 10.1038/nphys1952.

    [23] [23] KAMBA M, SHIMIZU R, AIKAWA, K. Optical cold damping of neutral nanoparticles near the ground state in an optical lattice[J]. Opt Express, 2022, 30(15):26716-26727. DOI: 10.1364/oe.462921.

    [24] [24] LI S, LI G, WU W, et al. High-numerical-aperture and long-working-distance objective for single-atom experiments[J]. Rev Sci Instrum, 2020, 91(4):043104. DOI: 10.1063/5.0001637.

    [25] [25] JI Z H, YUAN J P, ZHAO Y T, et al. Systematically investigating the polarization gradient cooling in an optical molasses of ultracold cesium atoms[J]. Chin Phys B, 2014, 23(11):113702. DOI: 10.1088/1674-1056/23/11/113702.

    [26] [26] KUHR S, ALT W, SCHRADER D, et al. Analysis of dephasing mechanisms in a standing-wave dipole trap[J]. Phys Rev A, 2005, 72(2):023406. DOI: 10.1103/PhysRevA.72.023406.

    [27] [27] CLEMMEN S, FARSI A, RAMELOW S, et al. Ramsey Interference with Single Photons[J]. Phys Rev Lett, 2016, 117(22):223601. DOI: 10.1103/PhysRevLett.117.223601.

    [28] [28] HU D, NIU L, JIN S, et al. Ramsey interferometry with trapped motional quantum states[J]. Commun Phys, 2018, 1(1):29. DOI: 10.1038/s42005-018-0030-7.

    [29] [29] HAHN E L. Spin echoes[J]. Phys Rev, 1950, 80(4):580-594. DOI: 10.1103/PhysRev.80.580.

    [30] [30] ANDERSEN M F, KAPLAN A, DAVIDSON N. Echo spectroscopy and quantum stability of trapped atoms[J]. Phys Rev Lett, 2003, 90(2):023001. DOI: 10.1103/PhysRevLett.90.023001.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Jia-yu, CHANG Hao-bo, TIAN Zhuang-zhuang, Lü Xin, LI Gang, ZHANG Peng-fei, ZHANG Tian-cai. Suppression of Laser Intensity Noise via Optoelectronic Feedback for Optical Trappings[J]. Journal of Quantum Optics, 2023, 29(4): 40601

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 27, 2023

    Accepted: Aug. 7, 2025

    Published Online: Aug. 7, 2025

    The Author Email:

    DOI:10.3788/jqo20232904.0601

    Topics