Chinese Journal of Lasers, Volume. 50, Issue 11, 1101012(2023)
Optical System Design: From Iterative Optimization to Artificial Intelligence
[1] Yang T, Duan Y Z, Cheng D W et al. Freeform imaging optical system design: theories, development, and applications[J]. Acta Optica Sinica, 41, 0108001(2021).
[2] Song Q, Zhu J, Wang J et al. A mixed gradient algorithm for high performance DOE design in off-axis lithography illumination system[J]. Acta Optica Sinica, 35, 0122005(2015).
[3] Liu Q L, Wu H P, Xiong Y J et al. Design of 450 mm aperture infrared aspheric optical system for warning detection in upper air[J]. Infrared Technology, 32, 517-522(2010).
[4] Bian Y X, Li H F, Wang Y F et al. Method to design two aspheric surfaces for a wide field of view imaging system with low distortion[J]. Applied Optics, 54, 8241-8247(2015).
[5] Shi C Y. Camera modules for cell phone[J]. Global Electronics China, 39-41(2004).
[6] Yin Z D. An 800 Mega pixel mobile phone camera lens optics designs and produce[D](2014).
[7] Zhang H, Ding X M, Tan J B. An achromatic method for optical imaging objective with long focal depth based on hybrid refractive-diffractive principle[J]. Optics and Precision Engineering, 16, 1810-1814(2008).
[8] Liu T, Zhou Y M, Wang J Q et al. Application of zone plate diffractive imaging technology in earth observation satellites[J]. Spacecraft Engineering, 21, 88-95(2012).
[9] Wang Y T, Cheng D W, Xu C. Display technologies in virtual reality systems[J]. Scientia Sinica (Informationis), 46, 1694-1710(2016).
[10] Zhu R H, Sun Y, Shen H. Progress and prospect of optical freeform surface measurement[J]. Acta Optica Sinica, 41, 0112001(2021).
[11] Li X T, Cen Z F[M]. Geometrical optics, aberrations and optical design(2014).
[12] Song Q, Zhu J, Wang J et al. A mixed gradient algorithm for high performance DOE design in off-axis lithography illumination system[J]. Acta Optica Sinica, 35, 0122005(2015).
[13] Yao D S, Liang H J. An OCAD optical design software package for automatic drawing[J]. Journal of Applied Optics, 25, 28-35(2004).
[14] Hou J. Design method for imaging freeform lens based on distortion correction[D](2013).
[15] Zhang Y M[M]. Applied optics(2011).
[16] Wang M H, Zhao G X, Shi Q R et al. Design methods and applications of freeform imaging optical systems[J]. Acta Optica Sinica, 43, 0822012(2023).
[17] Yang T, Zhu J, Hou W et al. Design method of freeform off-axis reflective imaging systems with a direct construction process[J]. Optics Express, 22, 9193-9205(2014).
[18] Zhuang Z F. Application of freeform surface in non-imaging and imaging optics[D](2014).
[19] Wu R M. Research on the design method of freeform illumination[D](2013).
[20] Cheng Y. Study on design and application of freeform optics[D](2013).
[21] Li F, Wang K Y. Design of optical imaging system for RGB three-channel diffraction telescope[J]. Journal of Applied Optics, 40, 369-372(2019).
[22] Zhou H Q, Huang L L, Wang Y T. Deep learning algorithm and its application in optics[J]. Infrared and Laser Engineering, 48, 1226004(2019).
[23] Zuo C, Feng S J, Zhang X Y et al. Deep learning based computational imaging: status, challenges, and future[J]. Acta Optica Sinica, 40, 0111003(2020).
[24] Wang F, Wang H, Bian Y M et al. Applications of deep learning in computational imaging[J]. Acta Optica Sinica, 40, 0111002(2020).
[25] Situ G H. Deep holography[J]. Light: Advanced Manufacturing, 3, 278-300(2022).
[26] Shen H, Gao J M. Deep learning virtual colorful lens-free on-chip microscopy[J]. Chinese Optics Letters, 18, 121705(2020).
[27] Hou J F, Situ G H. Image encryption using spatial nonlinear optics[J]. eLight, 2, 1-10(2022).
[28] Zheng S S, Liao M H, Wang F et al. Non-line-of-sight imaging under white-light illumination: a two-step deep learning approach[J]. Optics Express, 29, 40091-40105(2021).
[29] Mao S, Zhao J L. Optimal design for multi-layer diffractive optical elements with antireflection films[J]. Acta Optica Sinica, 39, 0305001(2019).
[30] Kim G, Domínguez-Caballero J A, Menon R. Design and analysis of multi-wavelength diffractive optics[J]. Optics Express, 20, 2814-2823(2012).
[31] Eisenbach O, Avayu O, Ditcovski R et al. Metasurfaces based dual wavelength diffractive lenses[J]. Optics Express, 23, 3928-3936(2015).
[32] Xie H, Huo F R, Xue C X. Optimal design and analysis of new coupled grating structure for head-mounted display[J]. Acta Optica Sinica, 42, 1405001(2022).
[33] Guo J J, Tu Y, Yang L L et al. Design of a multiplexing grating for color holographic waveguide[J]. Optical Engineering, 54, 125105(2015).
[34] Côté G, Lalonde J F, Thibault S. Extrapolating from lens design databases using deep learning[J]. Optics Express, 27, 28279-28292(2019).
[35] Côté G, Lalonde J F, Thibault S. Deep learning-enabled framework for automatic lens design starting point generation[J]. Optics Express, 29, 3841-3854(2021).
[36] Côté G, Zhang Y Q, Menke C et al. Inferring the solution space of microscope objective lenses using deep learning[J]. Optics Express, 30, 6531-6545(2022).
[37] Tsai C M, Han P, Lee H H et al. Lens design method prediction of local optimization algorithm by using deep learning[J]. Crystals, 12, 1206(2022).
[38] Mao S, Ren Z B, Zhao J L. An off-axis flight vision display system design using machine learning[J]. IEEE Photonics Journal, 14, 8618806(2022).
[40] Yang T, Cheng D W, Wang Y T. Direct generation of starting points for freeform off-axis three-mirror imaging system design using neural network based deep-learning[J]. Optics Express, 27, 17228-17238(2019).
[41] Chen W C, Yang T, Cheng D W et al. Generating starting points for designing freeform imaging optical systems based on deep learning[J]. Optics Express, 29, 27845-27870(2021).
[42] Wang N, Yan W, Qu Y R et al. Intelligent designs in nanophotonics: from optimization towards inverse creation[J]. PhotoniX, 2, 1-35(2021).
[43] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018).
[44] Mengu D, Sakib Rahman M S, Luo Y et al. At the intersection of optics and deep learning: statistical inference, computing, and inverse design[J]. Advances in Optics and Photonics, 14, 209-290(2022).
[45] Zhou T K, Fang L, Yan T et al. In situ optical backpropagation training of diffractive optical neural networks[J]. Photonics Research, 8, 940-953(2020).
[46] Qian C, Lin X, Lin X B et al. Performing optical logic operations by a diffractive neural network[J]. Light: Science & Applications, 9, 59(2020).
[47] Luo X H, Hu Y Q, Ou X N et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible[J]. Light: Science & Applications, 11, 158(2022).
[48] Chen Y Y, Zhu Y L, Britton W A et al. Inverse design of ultracompact multi-focal optical devices by diffractive neural networks[J]. Optics Letters, 47, 2842-2845(2022).
[49] Liu C, Ma Q, Luo Z J et al. A programmable diffractive deep neural network based on a digital-coding metasurface array[J]. Nature Electronics, 5, 113-122(2022).
[50] Bai B J, Luo Y, Gan T Y et al. To image, or not to image: class-specific diffractive cameras with all-optical erasure of undesired objects[J]. eLight, 2, 1-20(2022).
[51] Işıl Ç, Mengu D, Zhao Y F et al. Super-resolution image display using diffractive decoders[J]. Science Advances, 8, eadd3433(2022).
[52] Li J X, Gan T Y, Bai B J et al. Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network[J]. Advanced Photonics, 5, 016003(2023).
[53] Mengu D, Ozcan A. All-optical phase recovery: diffractive computing for quantitative phase imaging[J]. Advanced Optical Materials, 10, 2200281(2022).
[54] Xiao Y L, Li S K, Situ G H et al. Optical random phase dropout in a diffractive deep neural network[J]. Optics Letters, 46, 5260-5263(2021).
[55] Yuan R, Zhao C Z, Guo Y et al. Design of airborne conformal optical system based on computational imaging[J]. Laser & Optoelectronics Progress, 57, 232201(2020).
[56] Wang X H, Hao J K, Huang W et al. Image restoration and reconstruction based on simple lenses computational imaging[J]. Journal of Jilin University (Engineering and Technology Edition), 47, 965-972(2017).
[57] Zheng Y. Research on computational imaging technology of simple optical system[D](2019).
[58] Shao X P, Liu F, Li W et al. Latest progress in computational imaging technology and application[J]. Laser & Optoelectronics Progress, 57, 020001(2020).
[59] Cui J L. Research on enhancing the image quality of imperfect optical systems and its application via computational optics[D](2018).
[60] Schuler C J, Hirsch M, Harmeling S et al. Non-stationary correction of optical aberrations[C], 659-666(2012).
[61] Heide F, Rouf M, Hullin M B et al. High-quality computational imaging through simple lenses[J]. ACM Transactions on Graphics, 32, 149(2013).
[62] Muyo G, Singh A, Andersson M et al. Infrared imaging with a wavefront-coded singlet lens[J]. Optics Express, 17, 21118-21123(2009).
[63] Arguello H, Pinilla S, Peng Y F et al. Shift-variant color-coded diffractive spectral imaging system[J]. Optica, 8, 1424-1434(2021).
[64] Dun X, Ikoma H, Wetzstein G et al. Learned rotationally symmetric diffractive achromat for full-spectrum computational imaging[J]. Optica, 7, 913-922(2020).
[65] Peng Y F, Fu Q, Amata H et al. Computational imaging using lightweight diffractive-refractive optics[J]. Optics Express, 23, 31393-31407(2015).
[66] Peng Y F, Sun Q L, Dun X et al. Learned large field-of-view imaging with thin-plate optics[J]. ACM Transactions on Graphics, 38, 219(2019).
[67] Sitzmann V, Diamond S, Peng Y F et al. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging[J]. ACM Transactions on Graphics, 37, 114(2018).
[68] Liu Y K, Zhang C Y, Kou T D et al. End-to-end computational optics with a singlet lens for large depth-of-field imaging[J]. Optics Express, 29, 28530-28548(2021).
[69] Colburn S, Zhan A L, Majumdar A. Metasurface optics for full-color computational imaging[J]. Science Advances, 4, eaar2114(2018).
[70] Kwon H, Arbabi E, Kamali S M et al. Computational complex optical field imaging using a designed metasurface diffuser[J]. Optica, 5, 924-931(2018).
[71] Gao J M, Shen H, Cui X Q et al. Portable deep learning singlet multi-spectral microscope[J]. Optics and Lasers in Engineering, 137, 106378(2021).
[72] Shen H, Gao J M. Portable deep learning singlet microscope[J]. Journal of Biophotonics, 13, e202000013(2020).
[73] Bian Y X, Jiang Y N, Deng W J et al. Deep learning virtual Zernike phase contrast imaging for singlet microscopy[J]. AIP Advances, 11, 065311(2021).
[74] Bian Y X, Jiang Y N, Huang Y R et al. Deep learning virtual colorization overcoming chromatic aberrations in singlet lens microscopy[J]. APL Photonics, 6, 031301(2021).
[75] Bian Y X, Jiang Y N, Huang Y R et al. Smart-phone phase contrast microscope with a singlet lens and deep learning[J]. Optics & Laser Technology, 139, 106900(2021).
[76] Bian Y X, Jiang Y N, Wang J X et al. Deep learning colorful ptychographic iterative engine lens-less diffraction microscopy[J]. Optics and Lasers in Engineering, 150, 106843(2022).
[77] Bian Y X, Xing T, Jiao K R et al. Computational portable microscopes for point-of-care-test and tele-diagnosis[J]. Cells, 11, 3670(2022).
[78] Bian Y X, Zhang C, Yu Q et al. Design of reflective ultraviolet space-based single mirror computing imaging system[J]. Spacecraft Environment Engineering, 38, 193-199(2021).
[79] Fontbonne A, Sauer H, Goudail F. Comparison of methods for end-to-end co-optimization of optical systems and image processing with commercial lens design software[J]. Optics Express, 30, 13556-13571(2022).
[80] Dun X, Zhang J, Feng S Q et al. End-to-end collaborative design of optical system and image processing and its application[J]. Optics and Precision Engineering, 30, 2827-2838(2022).
Get Citation
Copy Citation Text
Jinming Gao, Jinying Guo, Anli Dai, Guohai Situ. Optical System Design: From Iterative Optimization to Artificial Intelligence[J]. Chinese Journal of Lasers, 2023, 50(11): 1101012
Category: laser devices and laser physics
Received: Feb. 6, 2023
Accepted: Apr. 24, 2023
Published Online: May. 29, 2023
The Author Email: Situ Guohai (ghsitu@siom.ac.cn)