Laser & Optoelectronics Progress, Volume. 62, Issue 3, 0306001(2025)

Improved Particle Swarm Path Planning for Ultraviolet Cooperative Drone Penetration

Taifei Zhao1,2、*, Haochen Du1, Yuqi Chen1, Borui Zheng1, and Shuang Zhang1
Author Affiliations
  • 1Faculty of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, Shaanxi , China
  • 2Key Laboratory of Wireless Optical Communication and Network Research in Xi’an City, Xi’an University of Technology, Xi’an 710048, Shaanxi , China
  • show less
    Figures & Tables(16)
    Plan diagram for maintaining the leading link within the formation. (a) Airborne hemispherical MIMO model; (b) maintaining the UV light guidance link among multiple machines
    Chaos distribution
    Pseudo code of the MRPSO algorithm
    Terrain threat model. (a) UAV cluster terrain collision map; (b) UAV formation topology map
    Rendering of penetration path planning in radar-free environments. (a) Front view; (b) side view
    Convergence curve of fitness value in radar-free environments
    Distribution of simulation results in radar-free environments. (a) Fitness value; (b) penetration success rate
    Effect diagram of penetration path planning in complex radar environments. (a) Front view; (b) side view
    Fitness value convergence curve in complex radar environments
    Distribution of penetration success rate in complex radar environments. (a) Ultraviolet collaboration; (b) radio collaboration
    Distribution of fitness values in complex radar environments. (a) Ultraviolet collaboration; (b) radio collaboration
    Comparison of different collaboration methods across four algorithms. (a) Penetration success rate; (b) fitness value
    • Table 1. Algorithm parameters

      View table

      Table 1. Algorithm parameters

      ParameterSymbolValue
      Particle population sizeM50
      Maximum iteration timestmax100
      Maximum social coefficientc1max2.5
      Minimum social coefficientc1min0.5
      Maximum cognitive coefficientc2max2.5
      Minimum cognitive coefficientc2min0.5
      Maximum inertia coefficientωmax1
      Minimum inertia coefficientωmin0.4
      Chaotic distribution coefficientr0.7
      Simulation space100×100×100
      Initial positionstartpos(1,1,1)
      Final positiongoalpos(100,100,30)
      Current particle indexi
      Current generation indext
    • Table 2. Simulation results in radar-free environments

      View table

      Table 2. Simulation results in radar-free environments

      AlgorithmCollision rate /%Path length /kmEnergy consumption rate /%Penetration success rate /%Fitness value
      PSO7.501.5913.2579.25219.49
      SPSO26.251.5412.8157.19286.29
      MGPSO11.251.5913.2979.22216.29
      MRPSO01.5713.1086.90187.29
    • Table 3. Radar detection area parameters

      View table

      Table 3. Radar detection area parameters

      Radar serial numberCoordinateRadius /kmHeight /kmRadar detection probability /%
      1(40,50)0.10.920
      2(50,20)0.10.920
      3(20,85)0.10.920
      4(65,88)0.10.920
      5(85,55)0.10.920
    • Table 4. Simulation results table in complex radar environments

      View table

      Table 4. Simulation results table in complex radar environments

      AlgorithmCollision rate /%Path length /kmRadar exposure probability /%Energy consumption rate /%Penetration success rate /%Fitness value
      PSO3.751.7519.6914.5761.99254.22
      SPSO33.751.4916.8113.2436.19321.31
      MGPSO01.6520.8213.8765.32232.81
      MRPSO01.745.3414.4880.18217.74
    Tools

    Get Citation

    Copy Citation Text

    Taifei Zhao, Haochen Du, Yuqi Chen, Borui Zheng, Shuang Zhang. Improved Particle Swarm Path Planning for Ultraviolet Cooperative Drone Penetration[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0306001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: May. 14, 2024

    Accepted: May. 28, 2024

    Published Online: Feb. 11, 2025

    The Author Email:

    DOI:10.3788/LOP241281

    CSTR:32186.14.LOP241281

    Topics