Chinese Journal of Lasers, Volume. 47, Issue 2, 207017(2020)
Progress in Research on Rare-Earth Upconversion Luminescent Nanomaterials and Bio-Sensing
[1] Aubin J E. Autofluorescence of viable cultured mammalian cells[J]. Journal of Histochemistry & Cytochemistry, 27, 36-43(1979).
[2] Yang Y L, Ye Y M, Li F M et al. Characteristic autofluorescence for cancer diagnosis and its origin[J]. Lasers in Surgery and Medicine, 7, 528-532(1987).
[5] Shin K, Jung T, Lee E et al. Distinct mechanisms for the upconversion of NaYF4∶Yb 3+,Er 3+ nanoparticles revealed by stimulated emission depletion[J]. Physical Chemistry Chemical Physics, 19, 9739-9744(2017).
[6] Tan G R, Wang M H, Hsu C Y et al. Small upconverting fluorescent nanoparticles for biosensing and bioimaging[J]. Advanced Optical Materials, 4, 984-997(2016).
[8] Wang P Y, Li X M, Yao C et al. Orthogonal near-infrared upconversion co-regulated site-specific O2 delivery and photodynamic therapy for hypoxia tumor by using red blood cell microcarriers[J]. Biomaterials, 125, 90-100(2017).
[9] Wang Y, Deng R R, Xie X J et al. Nonlinear spectral and lifetime management in upconversion nanoparticles by controlling energy distribution[J]. Nanoscale, 8, 6666-6673(2016).
[10] Wu S J, Duan N, Zhu C Q et al. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels[J]. Biosensors and Bioelectronics, 30, 35-42(2011).
[11] Xie X J. Renovating the chromoionophores and detection modes in carrier-based ion-selective optical sensors[J]. Analytical and Bioanalytical Chemistry, 408, 2717-2725(2016).
[13] Joshi C, Rai S B. Structural, thermal, and optical properties of Pr 3+/Yb 3+ co-doped oxyhalide tellurite glasses and its nano-crystalline parts[J]. Solid State Sciences, 14, 997-1003(2012).
[14] Ming C G, Song F, Yan L H. Spectroscopic study and green upconversion of Pr 3+/Yb 3+-codoped NaY(WO4)2 crystal[J]. Optics Communications, 286, 217-220(2013).
[15] Dey R, Rai V K, Pandey A. Green upconversion emission in Nd 3+-Yb 3+-Zn 2+∶Y2O3 phosphor[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99, 288-291(2012).
[16] Ramakrishna P V. Pammi S V N, Samatha K. UV-visible upconversion studies of Nd 3+ ions in lead tellurite glass[J]. Solid State Communications, 155, 21-24(2013).
[17] Wang F, Deng R R, Wang J et al. Tuning upconversion through energy migration in core-shell nanoparticles[J]. Nature Materials, 10, 968-973(2011).
[19] Gu Y X, Chen D R, Jiao X L et al. LiCoO2-MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties[J]. Journal of Materials Chemistry, 17, 1769-1776(2007).
[20] Ehlert O, Thomann R, Darbandi M et al. A four-color colloidal multiplexing nanoparticle system[J]. ACS Nano, 2, 120-124(2008).
[21] Heer S, Lehmann O, Haase M et al. Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution[J]. Angewandte Chemie International Edition, 42, 3179-3182(2003).
[22] Yi G, Chow G. Synthesis of hexagonal-phase NaYF4∶Yb,Er and NaYF4∶Yb,Tm nanocrystals with efficient up-conversion fluorescence[J]. Advanced Functional Materials, 16, 2324-2329(2006).
[25] Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chemical Society Reviews, 38, 976-989(2009).
[28] Heer S, Kömpe K, Güdel H U et al. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals[J]. Advanced Materials, 16, 2102-2105(2004).
[30] Hu H, Yu M X, Li F Y et al. Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels[J]. Chemistry of Materials, 20, 7003-7009(2008).
[31] Chen Z G, Chen H L, Hu H et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels[J]. Journal of the American Chemical Society, 130, 3023-3029(2008).
[32] Zhou H P, Xu C H, Sun W et al. Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications[J]. Advanced Functional Materials, 19, 3892-3900(2009).
[35] Pellegrino T, Manna L, Kudera S et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals[J]. Nano Letters, 4, 703-707(2004).
[38] Jiang G C, Pichaandi J. Johnson N J J, et al. An effective polymer cross-linking strategy to obtain stable dispersions of upconverting NaYF4 nanoparticles in buffers and biological growth media for biolabeling applications[J]. Langmuir, 28, 3239-3247(2012).
[40] Yi G S, Chow G M. Water-soluble NaYF4∶Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence[J]. Chemistry of Materials, 19, 341-343(2007).
[41] Cheng L, Yang K, Zhang S et al. Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles[J]. Nano Research, 3, 722-732(2010).
[43] Budijono S J, Shan J N, Yao N et al. Synthesis of stable block-copolymer-protected NaYF4∶Yb 3+,Er 3+ up-converting phosphor nanoparticles[J]. Chemistry of Materials, 22, 311-318(2010).
[44] Park Y I, Kim J H, Lee K T et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent[J]. Advanced Materials, 21, 4467-4471(2009).
[45] Nam S H, Bae Y M, Park Y I et al. Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells[J]. Angewandte Chemie, 123, 6217-6221(2011).
[46] Li L L, Zhang R B, Yin L L et al. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes[J]. Angewandte Chemie, 124, 6225-6229(2012).
[49] Hu H, Xiong L Q, Zhou J et al. Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells[J]. Chemistry-A European Journal, 15, 3577-3584(2009).
[54] Zhang H, Li Y J, Ivanov I et al. Plasmonic modulation of the upconversion fluorescence in NaYF4∶Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells[J]. Angewandte Chemie International Edition, 49, 2865-2868(2010).
[57] Voliani V, González-Béjar M, Herranz-Pérez V et al. Orthogonal functionalisation of upconverting NaYF4 nanocrystals[J]. Chemistry-A European Journal, 19, 13538-13546(2013).
[58] Bogdan N, Vetrone F, Ozin G A et al. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles[J]. Nano Letters, 11, 835-840(2011).
[62] Vetrone F, Naccache R, Zamarrón A et al. Temperature sensing using fluorescent nanothermometers[J]. ACS Nano, 4, 3254-3258(2010).
[63] Okabe K, Inada N, Gota C et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy[J]. Nature Communications, 3, 705(2012).
[66] Brites C D S, Xie X J, Debasu M L et al. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry[J]. Nature Nanotechnology, 11, 851-856(2016).
[67] Rodríguez-Sevilla P, Zhang Y H, Haro-González P et al. Thermal scanning at the cellular level by an optically trapped upconverting fluorescent particle[J]. Advanced Materials, 28, 2421-2426(2016).
[68] Jiang G, Zhou S, Wei X et al. 794 nm excited core-shell upconversion nanoparticles for optical temperature sensing[J]. RSC Advances, 6, 11795-11801(2016).
[69] Shi Z L, Duan Y, Zhu X J et al. Dual functional NaYF4∶Yb 3+,Er 3+@NaYF4∶Yb 3+,Nd 3+ core-shell nanopaticles for cell temperature sensing and imaging[J]. Nanotechnology, 29, 094001(2018).
[71] Hu D H, Sheng Z H, Zhu M T et al. Förster resonance energy transfer-based dual-modal theranostic nanoprobe for in situ visualization of cancer photothermal therapy[J]. Theranostics, 8, 410-422(2018).
[72] Bai T T, Gu N. Micro/nanoscale thermometry for cellular thermal sensing[J]. Small, 12, 4590-4610(2016).
[74] Hou Z Y, Deng K R, Li C X et al. 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd 3+-sensitized upconversion emission with enhanced anti-tumor efficacy[J]. Biomaterials, 101, 32-46(2016).
[75] Chen R, Ta V D, Xiao F et al. Multicolor hybrid upconversion nanoparticles and their improved performance as luminescence temperature sensors due to energy transfer[J]. Small, 9, 1052-1057(2013).
[76] Dong B, Cao B S, He Y Y et al. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides[J]. Advanced Materials, 24, 1987-1993(2012).
[77] Amiri M, Salavati-Niasari M, Pardakhty A et al. Caffeine: a novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery[J]. Materials Science and Engineering: C, 76, 1085-1093(2017).
[78] Amiri M, Akbari A, Ahmadi M et al. Synthesis and in vitro evaluation of a novel magnetic drug delivery system; proecological method for the preparation of CoFe2O4 nanostructures[J]. Journal of Molecular Liquids, 249, 1151-1160(2018).
[79] Zhu X J, Feng W, Chang J et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature[J]. Nature Communications, 7, 10437(2016).
[80] Sun X K, Sun J, Dong B et al. Noninvasive temperature monitoring for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites[J]. Biomaterials, 201, 42-52(2019).
[81] Long Q, Wen Y Q, Li H T et al. A novel fluorescent biosensor for detection of silver ions based on upconversion nanoparticles[J]. Journal of Fluorescence, 27, 205-211(2017).
[82] He L, Yang L, Zhu H et al. A highly sensitive biosensing platform based on upconversion nanoparticles and graphene quantum dots for the detection of Ag +[J]. Methods and Applications in Fluorescence, 5, 024010(2017).
[83] Li Z, Lü S, Wang Y L et al. Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore[J]. Journal of the American Chemical Society, 137, 3421-3427(2015).
[84] Wei R Y, Wei Z W, Sun L N et al. Nile red derivative-modified nanostructure for upconversion luminescence sensing and intracellular detection of Fe 3+ and MR imaging[J]. ACS Applied Materials & Interfaces, 8, 400-410(2016).
[85] Chen M. Kutsanedzie F Y H, Cheng W, et al. A nanosystem composed of upconversion nanoparticles and N, N-diethyl-p-phenylenediamine for fluorimetric determination of ferric ion[J]. Microchimica Acta, 185, 378(2018).
[86] Peng J J, Xu W, Teoh C L et al. High-efficiency in vitro and in vivo detection of Zn 2+ by dye-assembled upconversion nanoparticles[J]. Journal of the American Chemical Society, 137, 2336-2342(2015).
[87] Huang X H, Wang L J, Zhang X J et al. Dye-assembled nanocomposites for rapid upconversion luminescence sensing of Cu 2+[J]. Sensors and Actuators B: Chemical, 248, 1-8(2017).
[88] Xu Y X, Li H F, Meng X F et al. Rhodamine-modified upconversion nanoprobe for distinguishing Cu 2+ from Hg 2+ and live cell imaging[J]. New Journal of Chemistry, 40, 3543-3551(2016).
[89] Cui Z W, Bu W B, Fan W P et al. Sensitive imaging and effective capture of Cu 2+: towards highly efficient theranostics of Alzheimer's disease[J]. Biomaterials, 104, 158-167(2016).
[90] Wang F F, Zhang C L, Xue Q et al. Label-free upconversion nanoparticles-based fluorescent probes for sequential sensing of Cu 2+, pyrophosphate and alkaline phosphatase activity[J]. Biosensors and Bioelectronics, 95, 21-26(2017).
[91] Achatz D E, Meier R J, Fischer L H et al. Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles[J]. Angewandte Chemie International Edition, 50, 260-263(2011).
[92] Lü W, Yang T S, Yu Q et al. A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy[J]. Advanced Science, 2, 1500107(2015).
[94] Presley K, Hwang J, Cheong S et al. Nanoscale upconversion for oxygen sensing[J]. Materials Science and Engineering C, 70, 76-84(2017).
[95] Xu S H, Zhang X R, Xu H W et al. Silane modified upconversion nanoparticles with multifunctions: imaging, therapy and hypoxia detection[J]. Scientific Reports, 6, 22350(2016).
[96] Wang N N, Yu X Y, Zhang K et al. Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide[J]. Journal of the Amercian Chemical Society, 139, 12354-12357(2017).
[97] Ding Q, Zhan Q, Zhou X et al. Theranostic upconversion nanobeacons for tumor mRNA ratiometric fluorescence detection and imaging-monitored drug delivery[J]. Small, 12, 5944-5953(2016).
[98] Li Z, Liang T, Lü S et al. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical[J]. Journal of the American Chemical Society, 137, 11179-11185(2015).
[99] Zhou Y, Pei W B, Zhang X et al. A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling in vivo[J]. Biomaterials, 54, 34-43(2015).
[100] Peng J J, Samanta A, Zeng X et al. Real-time in vivo hepatotoxicity monitoring through chromophore-conjugated photon-upconverting nanoprobes[J]. Angewandte Chemie International Edition, 56, 4165-4169(2017).
[102] Näreoja T, Deguchi T, Christ S et al. Ratiometric sensing and imaging of intracellular pH using polyethylenimine-coated photon upconversion nanoprobes[J]. Analytical Chemistry, 89, 1501-1508(2017).
[103] Kuningas K, Ukonaho T, Päkkilä H et al. Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol[J]. Analytical Chemistry, 78, 4690-4696(2006).
[104] Wang M, Hou W, Mi C C et al. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4∶Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles[J]. Analytical Chemistry, 81, 8783-8789(2009).
[105] Jiang P, He M Y, Shen L et al. A paper-supported aptasensor for total IgE based on luminescence resonance energy transfer from upconversion nanoparticles to carbon nanoparticles[J]. Sensors and Actuators B: Chemical, 239, 319-324(2017).
[106] Jo E J, Mun H, Kim M G. Homogeneous immunosensor based on luminescence resonance energy transfer for glycated hemoglobin detection using upconversion nanoparticles[J]. Analytical Chemistry, 88, 2742-2746(2016).
[107] Doughan S, Uddayasankar U, Krull U J. A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors[J]. Analytica Chimica Acta, 878, 1-8(2015).
[108] Peng D F, Ju Q, Chen X et al. Lanthanide-doped energy cascade nanoparticles: full spectrum emission by single wavelength excitation[J]. Chemistry of Materials, 27, 3115-3120(2015).
[109] Li S, Xu L G, Ma W et al. Dual-mode ultrasensitive quantification of microRNA in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles[J]. Journal of the American Chemical Society, 138, 306-312(2016).
[110] Zhao J, Gao J H, Xue W T et al. Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells[J]. Journal of the American Chemical Society, 140, 578-581(2018).
[111] Rajendran M, Dane E, Conley J et al. Imaging adenosine triphosphate (ATP)[J]. The Biological Bulletin, 231, 73-84(2016).
Get Citation
Copy Citation Text
Xie Yingling, Shen Bo, Zhou Bingshuai, Liu Min, Fei Hongtian, Sun Jiao, Dong Biao. Progress in Research on Rare-Earth Upconversion Luminescent Nanomaterials and Bio-Sensing[J]. Chinese Journal of Lasers, 2020, 47(2): 207017
Category: biomedical photonics and laser medicine
Received: Oct. 8, 2019
Accepted: --
Published Online: Feb. 21, 2020
The Author Email: