Chinese Journal of Lasers, Volume. 48, Issue 17, 1706003(2021)

Disturbance Orbital Angular Momentum Spectrum Recognition Based on ResNeXt Network

Qiong Wu, Haiying Li*, Wei Ding, Lu Bai, and Zhensen Wu
Author Affiliations
  • School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
  • show less
    Figures & Tables(8)
    Schematic diagram of experimental device for generating high-order Bessel beam based on spiral phase plate method
    Intensity diagram of 0-order, 1st-order, 8th-order Bessel beam
    Intensity distribution diagram of transmission field of the eighth-order Bessel beam passing through the glass medium at the incident angles of 0°,10°, 20°, 30°, 40°, respectively
    Comparison of OAM spectrum recognition value and numerical result. (a)--(e) θ=0°, 10°, 20°, 30°, 40°
    • Table 1. OAM spectrum identification process of Bessel beam transmission field based on ResNeXt network

      View table

      Table 1. OAM spectrum identification process of Bessel beam transmission field based on ResNeXt network

      LayerTypeDetail
      1InputInput is typically 64×64 grayscale image
      22D ConvolutionEight 3×3 filters with stride 1, padding “same”
      3Batch normalization
      4Rectified linear units
      5Max pooling2×2 max pooling with stride 2
      62D ConvolutionEight channels, 163×3 filters, stride 1, padding “same”
      7Batch normalization
      8Rectified linear units
      9Max pooling2×2 max pooling with stride 2
      102D Convolution16 channels, 323×3 filters, stride 1, padding “same”
      11Batch normalization
      12Rectified linear units
      13Fully connected8912 inputs and 9 outputs
      14Softmax
      15Classification with OAM spectrumdistribution prediction9 classes with cross-entropy loss function, smooth L1 loss, f(l)
    • Table 2. OAM spectrum distribution of Bessel beam transmission field

      View table

      Table 2. OAM spectrum distribution of Bessel beam transmission field

      Incident anglel=4l=5l=6l=7l=8l=9l=10l=11l=12
      θ=0°7.80×10-64.04×10-40.99893.92×10-47.75×10-6
      θ=10°0.0070.0020.98220.00170.0066
      θ=20°0.10730.00660.77030.0060.1013
      θ=30°0.07570.00730.33010.00890.16840.00850.31200.00650.0662
      θ=40°0.21980.01110.05740.00710.10200.00680.05770.010.2177
    • Table 3. Fitting function parameters under different incident angles

      View table

      Table 3. Fitting function parameters under different incident angles

      Incidentanglea0a1b1w
      θ=0°0.3331-0.3339-0.5762.094
      θ=10°0.3297-0.3129-0.57252.097
      θ=20°0.28190.042-0.48662.17
      θ=30°0.12490.0003072-0.10931.768
      θ=40°0.0722-0.0509-0.02112.403
    • Table 4. Comparison of measured values and numerical calculation results of the eighth-order Bessel beam main mode

      View table

      Table 4. Comparison of measured values and numerical calculation results of the eighth-order Bessel beam main mode

      Incident angleθ=0°θ=10°θ=20°θ=30°θ=40°
      ResNeXt0.99990.96190.74200.12990.0961
      Numerical result0.99890.98180.76600.16840.1020
      Relative error /%0.10-2.03-3.13-22.86-5.78
    Tools

    Get Citation

    Copy Citation Text

    Qiong Wu, Haiying Li, Wei Ding, Lu Bai, Zhensen Wu. Disturbance Orbital Angular Momentum Spectrum Recognition Based on ResNeXt Network[J]. Chinese Journal of Lasers, 2021, 48(17): 1706003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: fiber optics and optical communications

    Received: Jan. 15, 2021

    Accepted: Mar. 9, 2021

    Published Online: Sep. 1, 2021

    The Author Email: Haiying Li (lihy@xidian.edu.cn)

    DOI:10.3788/CJL202148.1706003

    Topics