Opto-Electronic Engineering, Volume. 50, Issue 9, 230142-1(2023)

Progress on reconfigurable terahertz metasurface devices based on sulfide phase change materials

Shoujun Zhang1,2, Tun Cao3、*, and Zhen Tian1,2,4、**
Author Affiliations
  • 1Center for Terahertz Waves and School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China
  • 3School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China
  • 4Georgia Tech Shenzhen Institute (GTSI), Tianjin University, Shenzhen, Guangdong 518067, China
  • show less
    References(64)

    [1] Dragoman D, Dragoman M. Terahertz fields and applications[J]. Progr Quant Electron, 28, 1-66(2004).

    [2] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging–Modern techniques and applications[J]. Laser Photon Rev, 5, 124-166(2011).

    [3] Mittleman D M. Twenty years of terahertz imaging [Invited][J]. Opt Express, 26, 9417-9431(2018).

    [4] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nat Photon, 10, 371-379(2016).

    [5] Tonouchi M. Cutting-edge terahertz technology[J]. Nat Photon, 1, 97-105(2007).

    [6] He J W, Dong T, Chi B H et al. Metasurfaces for terahertz wavefront modulation: a review[J]. J Infrared Millit Terahertz Waves, 41, 607-631(2020).

    [7] Zang X F, Yao B S, Chen L et al. Metasurfaces for manipulating terahertz waves[J]. Light Adv Manuf, 2, 148-172(2021).

    [8] Liu L X, Zhang X Q, Kenney M et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Adv Mater, 26, 5031-5036(2014).

    [9] Wang P F, He F Y, Liu J J et al. High-Q ter ahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technol, 46, 630-635(2022).

    [10] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [11] Zhang X Q, Tian Z, Yue W S et al. Broadband terahertz wave deflection based on C‐shape complex metamaterials with phase discontinuities[J]. Adv Mater, 25, 4567-4572(2013).

    [12] Papakostas A, Potts A, Bagnall D et al. Optical manifestations of planar chirality[J]. Phys Rev Lett, 90, 107404(2003).

    [13] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).

    [14] Zhao H, Wang X K, Liu S T et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz Band[J]. Opto-Electron Adv, 6, 220012(2023).

    [15] Wang Q, Plum E, Yang Q L et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves[J]. Light Sci Appl, 7, 25(2018).

    [16] Ye W M, Zeuner F, Li X et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nat Commun, 7, 11930(2016).

    [17] Xu M F, He Q, Pu M B et al. Emerging long‐range order from a freeform disordered metasurface[J]. Adv Mater, 34, 2108709(2022).

    [18] Li Z Y, Pestourie R, Park J S et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality[J]. Nat Commun, 13, 2409(2022).

    [19] Sang D, Xu M F, Pu M B et al. Toward high‐efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization[J]. Laser Photon Rev, 16, 2200265(2022).

    [20] Wang Q, Zhang X Q, Xu Y H et al. A broadband metasurface‐based terahertz flat‐lens array[J]. Adv Opt Mater, 3, 779-785(2015).

    [21] Li J T, Wang G C, Yue Z et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electron Adv, 5, 210062(2022).

    [22] Xu Y H, Li Q, Zhang X Q et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation[J]. ACS Photonics, 6, 2933-2941(2019).

    [23] Cong L Q, Srivastava Y K, Zhang H F et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting[J]. Light Sci Appl, 7, 28(2018).

    [24] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nat Commun, 4, 2807(2013).

    [25] Liu M, Plum E, Li H et al. Switchable chiral mirrors[J]. Adv Opt Mater, 8, 2000247(2020).

    [26] Chen B W, Wu J B, Li W L et al. Programmable terahertz metamaterials with non‐volatile memory[J]. Laser Photon Rev, 16, 2100472(2022).

    [27] Wang L, Lin X W, Hu W et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[J]. Light Sci Appl, 4, e253(2015).

    [28] Shrekenhamer D, Chen W C, Padilla W J. Liquid crystal tunable metamaterial absorber[J]. Phys Rev Lett, 110, 177403(2013).

    [29] Lee S H, Choi M, Kim T T et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nat Mater, 11, 936-941(2012).

    [30] Li Q, Tian Z, Zhang X Q et al. Active graphene–silicon hybrid diode for terahertz waves[J]. Nat Commun, 6, 7082(2015).

    [31] Chen H T, Padilla W J, Zide J M et al. Active terahertz metamaterial devices[J]. Nature, 444, 597-600(2006).

    [32] Zhou J F, Chowdhury D R, Zhao R K et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity[J]. Phys Rev B, 86, 035448(2012).

    [33] Pitchappa P, Manjappa M, Ho C P et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Adv Opt Mater, 4, 541-547(2016).

    [34] Cong L Q, Pitchappa P, Lee C et al. Active phase transition via loss engineering in a terahertz MEMS metamaterial[J]. Adv Mater, 29, 1700733(2017).

    [35] Abdollahramezani S, Hemmatyar O, Taghinejad H et al. Tunable nanophotonics enabled by chalcogenide phase-change materials[J]. Nanophotonics, 9, 1189-1241(2020).

    [36] Wang J M, Wang L, Liu J. Overview of phase-change materials based photonic devices[J]. IEEE Access, 8, 121211-121245(2020).

    [37] Guo P F, Sarangan A M, Agha I. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators[J]. Appl Sci, 9, 530(2019).

    [38] Ríos C, Stegmaier M, Hosseini P et al. Integrated all-photonic non-volatile multi-level memory[J]. Nat Photon, 9, 725-732(2015).

    [39] Farmakidis N, Youngblood N, Li X et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality[J]. Sci Adv, 5, eaaw2687(2019).

    [40] Tuma T, Pantazi A, Le Gallo M et al. Stochastic phase-change neurons[J]. Nat Nanotechnol, 11, 693-699(2016).

    [41] Feldmann J, Stegmaier M, Gruhler N et al. Calculating with light using a chip-scale all-optical abacus[J]. Nat Commun, 8, 1256(2017).

    [42] Hosseini P, Wright C D, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films[J]. Nature, 511, 206-211(2014).

    [43] Du K K, Li Q, Lyu Y B et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light Sci Appl, 6, e16194(2017).

    [44] De Galarreta C R, Sinev I, Alexeev A M et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces[J]. Optica, 7, 476-484(2020).

    [45] Julian M N, Williams C, Borg S et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging[J]. Optica, 7, 746-754(2020).

    [46] Zhang M, Pu M B, Zhang F et al. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials[J]. Adv Sci, 5, 1800835(2018).

    [47] Zhang F, Xie X, Pu M B et al. Multistate switching of photonic angular momentum coupling in phase‐change metadevices[J]. Adv Mater, 32, 1908194(2020).

    [48] Huang Y J, Xiao T X, Xie Z W et al. Multistate nonvolatile metamirrors with tunable optical chirality[J]. ACS Appl Mater Interfaces, 13, 45890-45897(2021).

    [49] Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications[J]. Nat Photon, 11, 465-476(2017).

    [50] Raeis-Hosseini N, Rho J. Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices[J]. Materials (Basel), 10, 1046(2017).

    [51] Makino K, Kuromiya S, Takano K et al. THz pulse detection by multilayered GeTe/Sb2Te3[J]. ACS Appl Mater Interfaces, 8, 32408-32413(2016).

    [52] Zhou K, Nan J Y, Shen J B et al. Phase change of Ge2Sb2Te5 under terahertz laser illumination[J]. APL Mater, 9, 101113(2021).

    [53] Zhang S J, Chen X Y, Liu K et al. Terahertz multi-level nonvolatile optically rewritable encryption memory based on chalcogenide phase-change materials[J]. Iscience, 25, 104866(2022).

    [54] Pitchappa P, Kumar A, Prakash S et al. Chalcogenide phase change material for active terahertz photonics[J]. Adv Mater, 31, 1808157(2019).

    [55] Liu K, Chen X Y, Lian M et al. Nonvolatile reconfigurable electromagnetically induced transparency with terahertz chalcogenide metasurfaces[J]. Laser Photon Rev, 16, 2100393(2022).

    [56] Cao T, Lian M, Chen X Y et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials[J]. Opto-Electron Sci, 1, 210010(2022).

    [57] Chen X Y, Zhang S J, Liu K et al. Reconfigurable and nonvolatile terahertz metadevices based on a phase-change material[J]. ACS Photonics, 9, 1638-1646(2022).

    [58] Chen J J, Chen X Y, Liu K et al. A thermally switchable bifunctional metasurface for broadband polarization conversion and absorption based on phase‐change material[J]. Adv Photonics Res, 3, 2100369(2022).

    [59] Bao J X, Chen X Y, Liu K et al. Nonvolatile chirality switching in terahertz chalcogenide metasurfaces[J]. Microsyst Nanoeng, 8, 112(2022).

    [60] Zhang S J, Chen X Y, Liu K et al. Nonvolatile reconfigurable terahertz wave modulator[J]. PhotoniX, 3, 7(2022).

    [61] Lian M, Su Y, Liu K et al. Nonvolatile switchable broadband polarization conversion with wearable terahertz chalcogenide metamaterials[J]. Adv Opt Mater, 11, 2202439(2023).

    [62] Chen X Y, Zhang S J, Liu K et al. Reconfigurable and nonvolatile terahertz lithography-free photonic devices based on phase change films[J]. Photonics Res, 11, 669-681(2023).

    [63] Zhang S J, Chen X Y, Liu K et al. Nonvolatile reconfigurable dynamic Janus metasurfaces in the terahertz regime[J]. Photonics Res, 10, 1731-1743(2022).

    [64] Pitchappa P, Kumar A, Prakash S et al. Volatile ultrafast switching at multilevel nonvolatile states of phase change material for active flexible terahertz metadevices[J]. Adv Funct Mater, 31, 2100200(2021).

    Tools

    Get Citation

    Copy Citation Text

    Shoujun Zhang, Tun Cao, Zhen Tian. Progress on reconfigurable terahertz metasurface devices based on sulfide phase change materials[J]. Opto-Electronic Engineering, 2023, 50(9): 230142-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jun. 20, 2023

    Accepted: Aug. 8, 2023

    Published Online: Jan. 24, 2024

    The Author Email: Tun Cao (曹暾), Zhen Tian (田震)

    DOI:10.12086/oee.2023.230142

    Topics