Chinese Optics Letters, Volume. 20, Issue 11, 113601(2022)

Fast dual-beam alignment method for stimulated emission depletion microscopy using aggregation-induced emission dye resin

Miao Zhao1,2, Fengming Liu3, Yang Yu3, Xinjun Guo1, Hao Ruan1、*, and Jing Wen4
Author Affiliations
  • 1Laboratory of Micro-Nano Optoelectronic Materials and Devices, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3National Center for Protein Science Shanghai, Shanghai 200120, China
  • 4Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less

    A stimulated emission depletion is capable of breaking the diffraction limit by exciting fluorescent molecules with a solid Gaussian beam and quenching the excited molecules with another donut beam through stimulated emission. The coincidence degree of these two beams in three dimensions will significantly influence the spatial resolution of the microscope. However, the conventional alignment approach based on raster scanning of gold nanoparticles by the two laser beams separately suffers from a mismatch between fluorescence and scattering modes. To circumvent the above problems, we demonstrate a fast alignment design by scanning the second beam over the fabricated sample, which is made of aggregation-induced emission (AIE) dye resin. The relative positions of solid and donut laser beams can be represented by the fluorescent AIE from the labeled spots in the dye resin. This design achieves ultra-high resolutions of 22 nm in the x/y relative displacement and 27 nm in the z relative displacement for fast spatial matching of the two laser beams. This study has potential applications in scenarios that require the spatial matching of multiple laser beams, and the field of views of different objectives, for example, in a microscope with high precision.


    1. Introduction

    The optical diffraction barrier has always been an ultimate constrain for researchers in exploring the nanoscale world. The emergence of stimulated emission depletion (STED) technology has proven to be a deterministic functional technique in providing a subversive way to erupt this limitation[18] and has a wide-range application in the fields of laser direct writing[912], optical data storage[1315], and biology[1619]. The spatial resolution of STED microscopy is determined by the three-dimensional (3D) coincidence degree of the donut depletion beam to the solid excitation beam to a great extent.


    Get Citation

    Copy Citation Text

    Miao Zhao, Fengming Liu, Yang Yu, Xinjun Guo, Hao Ruan, Jing Wen. Fast dual-beam alignment method for stimulated emission depletion microscopy using aggregation-induced emission dye resin[J]. Chinese Optics Letters, 2022, 20(11): 113601

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nanophotonics, Metamaterials, and Plasmonics

    Received: Feb. 9, 2022

    Accepted: May. 31, 2022

    Posted: Jun. 1, 2022

    Published Online: Jun. 29, 2022

    The Author Email: Hao Ruan (



    Please enter the answer below before you can view the full text.