Acta Optica Sinica, Volume. 41, Issue 4, 0401002(2021)

Retrieval of Regional Aerosol Optical Depth Using Deep Learning

Tianchen Liang, Lin Sun*, and Yongji Wang
Author Affiliations
  • College of Geomatics, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
  • show less
    Figures & Tables(7)
    Structural diagram of DBN
    Flow chart of DBN
    Scatter density map of AOD predication value and AERONET site observation value
    Comparison between model predication results and measurement results at different sites
    Spatial distribution of aerosol optical depth
    • Table 1. Landsat8 OLI data

      View table

      Table 1. Landsat8 OLI data

      Band No.Spectral range /μmSpatial resolution /m
      B1 (Coastal)0.43-0.4530
      B2 (Blue)0.45-0.5130
      B3 (Green)0.53-0.5930
      B4 (Red)0.64-0.6730
      B5 (NIR)0.85-0.8830
      B6 (SWIR 1)1.57-1.6530
      B7 (SWIR 2)2.11-2.2930
      B8 (Pan)0.50-0.6815
      B9 (Cirrus)1.36-1.3830
    • Table 2. Error statistics

      View table

      Table 2. Error statistics

      PositionRRMMAEE
      Europe0.450.0830.05973.12
      North America0.530.0770.04979.36
      South America0.790.0690.04880.05
      Africa0.700.1520.09864.77
      Oceania0.730.0530.04184.58
      Asia0.750.1420.10061.58
    Tools

    Get Citation

    Copy Citation Text

    Tianchen Liang, Lin Sun, Yongji Wang. Retrieval of Regional Aerosol Optical Depth Using Deep Learning[J]. Acta Optica Sinica, 2021, 41(4): 0401002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Aug. 4, 2020

    Accepted: Sep. 25, 2020

    Published Online: Feb. 25, 2021

    The Author Email: Lin Sun (sunlin6@126.com)

    DOI:10.3788/AOS202141.0401002

    Topics