Chinese Journal of Lasers, Volume. 51, Issue 10, 1002323(2024)

Effect of Pore Type on High‑Temperature Plasticity of Inconel 625 Alloy Fabricated by Selective Laser Melting

Wei Nie1, Fencheng Liu1、*, Wenwei Hu1, Fenggang Liu1, Yongxiang Geng1, Hong Wang2, Wanqian Hu3, and Lianbo Wang3
Author Affiliations
  • 1National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, Jiangxi , China
  • 2Engineering Training Centre, Nanchang Hangkong University, Nanchang 330063, Jiangxi , China
  • 3Jiangxi Baohang Advanced Materials Co. Ltd., Nanchang 330200, Jiangxi , China
  • show less
    References(29)

    [1] Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field[J]. Materials China, 34, 684-688, 658(2015).

    [2] Song Z F, Gao S, He B et al. Long-time thermal exposure microstructures and performance evolution law of selective laser melting IN625 nickel-based superalloy[J]. Chinese Journal of Lasers, 49, 1402807(2022).

    [3] Wu W. Study on ductility dip cracking sensitivity for Inconel690 electrode filler metal[D](2005).

    [4] Cui W. Study on high temperature plastic cracking of nickel-based alloy welded joints[D](2013).

    [5] Salarian M, Asgari H, Vlasea M. Pore space characteristics and corresponding effect on tensile properties of Inconel 625 fabricated via laser powder bed fusion[J]. Materials Science and Engineering: A, 769, 138525(2020).

    [6] Li C, White R, Fang X Y et al. Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment[J]. Materials Science and Engineering: A, 705, 20-31(2017).

    [7] Hu X A, Zhao G L, Jiang Y et al. Experimental investigation on the LCF behavior affected by manufacturing defects and creep damage of one selective laser melting nickel-based superalloy at 815 ℃[J]. Acta Metallurgica Sinica (English Letters), 33, 514-527(2020).

    [8] Kreitcberg A, Brailovski V, Turenne S. Elevated temperature mechanical behavior of IN625 alloy processed by laser powder-bed fusion[J]. Materials Science and Engineering: A, 700, 540-553(2017).

    [9] Kanagarajah P, Brenne F, Niendorf T et al. Inconel 939 processed by selective laser melting: effect of microstructure and temperature on the mechanical properties under static and cyclic loading[J]. Materials Science and Engineering: A, 588, 188-195(2013).

    [10] Sanchez-Mata O, Muñiz-Lerma J A, Wang X et al. Microstructure and mechanical properties at room and elevated temperature of crack-free Hastelloy X fabricated by laser powder bed fusion[J]. Materials Science and Engineering: A, 780, 139177(2020).

    [11] Zhou Y H, Zhang Z H, Wang Y P et al. Selective laser melting of typical metallic materials: an effective process prediction model developed by energy absorption and consumption analysis[J]. Additive Manufacturing, 25, 204-217(2019).

    [12] Wei P, Wei Z Y, Chen Z et al. The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior[J]. Applied Surface Science, 408, 38-50(2017).

    [13] Li S, Wei Q S, Shi Y S et al. Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting[J]. Journal of Materials Science & Technology, 31, 946-952(2015).

    [14] Stopka K S, Desrosiers A, Nicodemus T et al. Intentionally seeding pores in additively manufactured alloy 718: process parameters, microstructure, defects, and fatigue[J]. Additive Manufacturing, 66, 103450(2023).

    [15] Wu Z Y, Sun Z Z, Wang H L et al. Effect of SLM forming parameters on relative-density of 18Ni-300 die steel[J]. Laser & Optoelectronics Progress, 59, 1716001(2022).

    [16] Konečná R, Kunz L, Nicoletto G et al. Long fatigue crack growth in Inconel 718 produced by selective laser melting[J]. International Journal of Fatigue, 92, 499-506(2016).

    [17] King W E, Barth H D, Castillo V M et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J]. Journal of Materials Processing Technology, 214, 2915-2925(2014).

    [18] Pastor M, Zhao H, Debroy T. Pore formation during continuous wave Nd∶YAG laser welding of aluminium for automotive applications[J]. Welding International, 15, 275-281(2001).

    [19] Le K Q, Tang C, Wong C H. On the study of keyhole-mode melting in selective laser melting process[J]. International Journal of Thermal Sciences, 145, 105992(2019).

    [20] Moussaoui K, Rubio W, Mousseigne M et al. Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties[J]. Materials Science and Engineering: A, 735, 182-190(2018).

    [21] Tillmann W, Schaak C, Nellesen J et al. Hot isostatic pressing of IN718 components manufactured by selective laser melting[J]. Additive Manufacturing, 13, 93-102(2017).

    [22] Benedetti M, Cazzolli M, Fontanari V et al. Fatigue limit of Ti6Al4V alloy produced by selective laser sintering[J]. Procedia Structural Integrity, 2, 3158-3167(2016).

    [23] Wang L, Guo K, Cong J Q et al. Effect of process parameters on defect in selective laser melting of 316L stainless steel[J]. Laser & Optoelectronics Progress, 60, 0514007(2023).

    [24] Ren Z H, Zhang Z W, Ma X Y et al. Laser irradiation behavior analysis during balling effect in selective laser melting[J]. Chinese Journal of Lasers, 49, 1402203(2022).

    [25] Jia J Y. Porosity and mechanical properties of Inconel 718 superalloy produced by selective laser melting[D](2020).

    [26] Cao R, Liu G, Chen J H et al. Formation mechanism and research progress of DDC in high temperature plastic cracking of nickel-based materials during welding[J]. Welding & Joining, 7-13(2018).

    [27] Collins M, Lippold J. Quantifying ductility-dip cracking susceptibility in nickel-base weld metals using the strain-to-fracture test[C], 586-590(2002).

    [28] Nissley N E, Lippold J C. Ductility-dip cracking susceptibility of nickel-based weld metals-part 1: strain-to-fracture testing[J]. Welding Journal, 87, 257-264(2008).

    [29] Kim I S, Choi B G, Hong H U et al. Anomalous deformation behavior and twin formation of Ni-base superalloys at the intermediate temperatures[J]. Materials Science and Engineering: A, 528, 7149-7155(2011).

    Tools

    Get Citation

    Copy Citation Text

    Wei Nie, Fencheng Liu, Wenwei Hu, Fenggang Liu, Yongxiang Geng, Hong Wang, Wanqian Hu, Lianbo Wang. Effect of Pore Type on High‑Temperature Plasticity of Inconel 625 Alloy Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2024, 51(10): 1002323

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Dec. 8, 2023

    Accepted: Mar. 1, 2024

    Published Online: Apr. 17, 2024

    The Author Email: Liu Fencheng (fencheng999@163.com)

    DOI:10.3788/CJL231492

    CSTR:32183.14.CJL231492

    Topics