Journal of Quantum Optics, Volume. 27, Issue 1, 1(2021)
Entanglement Enhancement of Filter Output Light Field in Cavity Optical Force System
[1] [1] Brunner N, Cavalcanti D, Pironio S, et al. Bell nonlocality[J]. Rev Mod Phys, 2014, 86:419-478. DOI: 10.1103/RevModPhys.86.419.
[2] [2] Bassi A, Lochan K, Satin S, et al. Models of wave-function collapse, underlying theories, and experimental tests[J]. Rev Mod Phys, 2013, 85:471-527. DOI: 10.1103/RevModPhys.85.471.
[3] [3] Zurek W H. Decoherence and the transition from quantum to classical[J]. Phys Today, 1991, 44:36-44. DOI: 10.1063/1.881293. Zurek W H. Decoherence, einselection, and the quantum origins of the classical[J]. Rev Mod Phys, 2003, 75:715-775. DOI: 10.1103/RevModPhys.75.715.
[6] [6] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information[M]. Cambridge: Cambridge University Press, 2000. DOI: 10.2277/0521635039.
[7] [7] Paternostro M, Vitali D, Gigan S, et al. Creating and Probing Multipartite Macroscopic Entanglement with Light[J]. Phys Rev Lett, 2007, 99(25):250401. DOI: 10.1103/PhysRevLett.99.250401.
[8] [8] Barzanjeh Sh, Vitali D, Tombesi P, Milburn G J. Entangling optical and microwave cavity modes by means of a nanomechanical resonator[J]. Phys Rev A, 2011, 84(4):042342. DOI: 10.1103/PhysRevA.84.042342.
[9] [9] Tan H T, Li G X. Multicolor quadripartite entanglement from an optomechanical cavity[J]. Phys Rev A, 2011, 84(2):024301. DOI: 10.1103/PhysRevA.84.024301.
[10] [10] Vitali D, Gigan S, Ferreira A, et al. Optomechanical entanglement between a movable mirror and a cavity field[J]. Phys Rev Lett, 2007, 98(3):030405. DOI: 10.1109/CLEOE-IQEC.2007.4386788.
[11] [11] Mari A, Eisert J. Gently modulating optomechanical systems[J]. Phys Rev Lett, 2009, 103(21):213603. DOI: 10.1103/physrevlett.103.213603.
[12] [12] Hofer S G,Wieczorek W, et al. Quantum entanglement and teleportation in pulsed cavity optomechanics[J]. Phys Rev A, 2011, 84(5):052327. DOI: https://doi.org/10.1103/PhysRevA.84.052327.
[13] [13] Mancini S, Giovannetti V, D. Vitali, et al. Entangling macroscopic oscillators exploiting radiation pressure[J]. Phys Rev Lett, 2002, 88(12):120401. DOI: 10.1103/PhysRevLett.88.120401.
[14] [14] Hartmann M J, Plenio M B. Steady state entanglement in the mechanical vibrations of two dielectric membranes[J]. Phys Rev Lett, 2008, 101(20):200503. DOI: 10.1103/PhysRevLett.101.200503.
[15] [15] Zhang J, Peng K, Braunstein S L. Quantum-state transfer from light to macroscopic oscillators[J]. Phys Rev A, 2003, 68(1):013808. DOI: 10.1103/PhysRevA.68.013808.
[16] [16] Genes C, Vitali D, et al. Emergence of atom-light-mirror entanglement inside an optical cavity[J]. Phys Rev A, 2008, 77(5):050307(R). DOI: 10.1103/PhysRevA.77.050307.
[17] [17] Rogers B, Paternostro M, Palma G M, et al. Entanglement control in hybrid optomechanical systems[J]. Phys Rev A, 2012, 86(4):042323. DOI: 10.1103/PhysRevA.86.042323.
[18] [18] He Q, Ficek Z. Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system[J]. Phys Rev A, 2014, 89(2):022332. DOI: 10.1103/PhysRevA.89.022332.
[19] [19] Barzanjeh Sh, Vitali D, Tombesi P, et al. Entangling optical and microwave cavity modes by means of a nanomechanical resonator[J]. Phys Rev A, 2011, 84(4):042342. DOI: 10.1103/PhysRevA.84.042342.
[20] [20] Yang X H, Ling Y, Shao X P, Xiao M. Generation of robust tripartite entanglement with a single-cavity optomechanical system[J]. Phys Rev A, 2017, 95(5):052303. DOI: 10.1103/PhysRevA.95.052303.
[21] [21] Yang R G, Li N,Zhang J, et al. Enhanced entanglement of two optical modes in optomechanical systems via an optical parametric amplifier[J]. J Phys B: At Mol Opt Phys, 2017, 50:085502. DOI: 10.1088/1361-6455/aa64c1.
[22] [22] Deng Z J, Yan X B, et al. Optimizing the output-photon entanglement in multimode optomechanical systems[J]. Phys Rev A, 2016,93(3):033842.DOI: 10.1103/PhysRevA.93.033842.
[23] [23] Zhang J, Liu X Y, Yang R G, et al. Scheme for enhancing quadripartite entangled optical modes from an opto-mechanical system[J]. Journal of the Optical Society of America B, 2018, 35(12):2945. DOI: 10.1364/JOSAB.35.002945.
[24] [24] Yan X B, Deng Z J, et al. Entanglement optimization of filtered output fields in cavity optomechanics[J]. Optics Express, 2019, 27(17):24393-24402. DOI: 10.1364/OE.27.02439.
[25] [25] Palomaki T A. Teufel J D, et al. Entangling Mechanical Motion with Microwave Fields[J]. Science, 2013, 342(6159):710-713. DOI: 10.1126/science.1244563.
[26] [26] Gardiner C W, Zoller. Quantum Noise. (Springer, Berlin, 2000).
[27] [27] Genes C, Mari A, Vitali D, Tombesi P. Quantum effects in optomechanical systems[J]. Adv At Mol Opt Phys, 2009, 57:33-86. DOI: 10.1016/S1049-250X(09)57002-4.
[28] [28] Genes C, Mari A. P, et al. Robust entanglement of a micromechanical resonator with output optical fields[J]. Phys Rev A, 2008, 78(3):032316. DOI: 10.1103/PhysRevA.78.032316.
[29] [29] Asjad M, Tombesi P, Vitali D. Feedback control of two-mode output entanglement and steering in cavity optomechanics[J]. Phys Rev A, 2016, 94(5 Pt.A):052312. DOI: 10.1103/PhysRevA.94.052312.
[30] [30] Vidal G, Werner R F. Computable measure of entanglement[J]. Phys Rev A, 2002, 65(3):032314. DOI: 10.1103/PhysRevA.65.032314.
[31] [31] Plenio M. B. Logarithmic negativity: a full entanglement monotone that is not convex[J]. Phys Rev Lett, 2005, 95(9):090503. DOI: 10.1103/PhysRevLett.95.090503.
Get Citation
Copy Citation Text
ZHAO Hui, ZHANG Jing. Entanglement Enhancement of Filter Output Light Field in Cavity Optical Force System[J]. Journal of Quantum Optics, 2021, 27(1): 1
Category:
Received: Dec. 17, 2020
Accepted: --
Published Online: Sep. 13, 2021
The Author Email: ZHANG Jing (zjj@sxu.edu.cn)