Acta Optica Sinica, Volume. 43, Issue 11, 1124001(2023)
Radar Cross Section Reduction Based on Coding Phase Gradient Metasurface in Terahertz Frequencies
[1] Yan X, Liang L J, Zhang Y T et al. Research progress of electromagnetic metasurface used for radar cross section reduction in microwave and terahertz wave[J]. Spectroscopy and Spectral Analysis, 36, 1639-1644(2016).
[2] Sun H Y, Gu C Q, Chen X L et al. Broadband and broad-angle polarization-independent metasurface for radar cross section reduction[J]. Scientific Reports, 7, 40782(2017).
[3] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications[J]. Journal of Applied Physics, 107, 111101(2010).
[4] Pawar A Y, Sonawane D D, Erande K B et al. Terahertz technology and its applications[J]. Drug Invention Today, 5, 157-163(2013).
[5] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 10, 371-379(2016).
[6] Yan X, Liang L J, Zhang Y T et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies[J]. Acta Physica Sinica, 64, 158101(2015).
[7] Gong C, Zhan M Z, Yang J et al. Broadband terahertz metamaterial absorber based on sectional asymmetric structures[J]. Scientific Reports, 6, 32466(2016).
[8] Huang C C, Zhang Y G, Liang L J et al. Narrow/broad band switchable terahertz absorber based on graphene and vanadium dioxide composite structure[J]. Acta Optica Sinica, 42, 1916001(2022).
[9] Gao L H, Cheng Q, Yang J et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science & Applications, 4, e324(2015).
[10] Liang L J, Che K Q, Liu F S et al. The study of terahertz artificial electromagnetic surface in RCS reduction[J]. Journal of Zaozhuang University, 34, 26-32(2017).
[11] Moccia M, Koral C, Papari G P et al. Suboptimal coding metasurfaces for terahertz diffuse scattering[J]. Scientific Reports, 8, 11908(2018).
[12] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014).
[13] Li Y F, Zhang J Q, Qu S B et al. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction[J]. Acta Physica Sinica, 63, 084103(2014).
[14] Chen L, Ma H L, Song X J et al. Dual-functional tunable coding metasurface based on saline water substrate[J]. Scientific Reports, 8, 2070(2018).
[15] Li S H, Li J S. Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction[J]. Chinese Physics B, 28, 094210(2019).
[16] Feng M C, Li Y F, Zheng Q Q et al. Two-dimensional coding phase gradient metasurface for RCS reduction[J]. Journal of Physics D: Applied Physics, 51, 375103(2018).
[17] Zhou Y, Zhang G R, Chen H Y et al. Design of phase gradient coding metasurfaces for broadband wave modulating[J]. Scientific Reports, 8, 8672(2018).
[18] Wu R Y, Shi C B, Liu S et al. Addition theorem for digital coding metamaterials[J]. Advanced Optical Materials, 6, 1701236(2018).
[19] Guo J Y, Li W Y, Sun R et al. Generation of broadband terahertz vortex beam based on double-arrow metasurface[J]. Chinese Journal of Lasers, 48, 2014003(2021).
[20] Katoch S, Chauhan S S, Kumar V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 80, 8091-8126(2021).
[21] Xie Z Q, He Y L, Wang P P et al. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface[J]. Acta Physica Sinica, 69, 014101(2020).
[22] Li J S, Yao J Q. Manipulation of terahertz wave using coding Pancharatnam-Berry phase metasurface[J]. IEEE Photonics Journal, 10, 5900512(2018).
[23] Yang S, Wang J Y, Zhang T et al. Temperature-voltage Bi-controllable broadband terahertz polarization conversion/absorption metasurface[J]. Acta Optica Sinica, 42, 0824001(2022).
[24] Zheng Q Q, Li Y F, Zhang J Q et al. Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase[J]. Scientific Reports, 7, 43543(2017).
[25] Zhang Y, Liang L J, Yang J et al. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution[J]. Scientific Reports, 6, 26875(2016).
[26] Li G Q, Shi H Y, Liu K et al. Multi-beam multi-mode vortex beams generation based on metasurface in terahertz band[J]. Acta Physica Sinica, 70, 188701(2021).
[27] Wang Z Z, Sobey A. Potuzak T. A comparative review between genetic algorithm use in composite optimisation and the state-of-the-art in evolutionary computation[J]. Composite Structures, 233, 111739(2020).
[28] Yang S R, Bai H Q, Bao J et al. Prediction of cladding layer morphology based on BP neural network optimized by regression analysis and genetic algorithm[J]. Laser & Optoelectronics Progress, 59, 2114002(2022).
[29] Pan Y B, Lan F, Zhang Y X et al. Dual-band multifunctional coding metasurface with a mingled anisotropic aperture for polarized manipulation in full space[J]. Photonics Research, 10, 416-425(2022).
[30] Wu T, Zhang H F, Kumaran S et al. All dielectric metasurfaces for spin-dependent terahertz wavefront control[J]. Photonics Research, 10, 1695-1702(2022).
Get Citation
Copy Citation Text
Jingli Wang, Liang Yin, Xianchao Dong, Zhixiong Yang, Hongdan Wan, Heming Chen, Kai Zhong. Radar Cross Section Reduction Based on Coding Phase Gradient Metasurface in Terahertz Frequencies[J]. Acta Optica Sinica, 2023, 43(11): 1124001
Category: Optics at Surfaces
Received: Dec. 5, 2022
Accepted: Feb. 6, 2023
Published Online: May. 29, 2023
The Author Email: Wang Jingli (jlwang@njupt.edu.cn)