Chinese Journal of Lasers, Volume. 50, Issue 9, 0907209(2023)

UVC Sterilization Mechanism and Influencing Factors

Tao Zhu*, Shunjiang Fu, Wei Xie, and Huan Xu
Author Affiliations
  • School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
  • show less
    References(75)

    [1] Buchan A G, Yang L, Welch D et al. Improved estimates of 222 nm far-UVC susceptibility for aerosolized human coronavirus via a validated high-fidelity coupled radiation-CFD code[J]. Scientific Reports, 11, 1-9(2021).

    [2] Eadie E, Hiwar W, Fletcher L et al. Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber[J]. Scientific Reports, 12, 1-9(2022).

    [3] Li L, Bai X T. Effect of ultraviolet radiation on human skin health[J]. Foreign Medical Sciences (Section Hygiene), 198-202(2008).

    [4] Zhao Z G, Xuan H W, Wang J C et al. Research progresses on vacuum-ultraviolet 193-nm band solid-state lasers[J]. Acta Optica Sinica, 42, 1134010(2022).

    [5] Yin Z Q, Lü P S, Zhu Z et al. Sunlight-excited inorganic UVC upconversion luminescent materials[J]. Laser & Optoelectronics Progress, 58, 1516013(2021).

    [6] Kang J W, Kim S S, Kang D H. Inactivation dynamics of 222 nm krypton-chlorine excilamp irradiation on Gram-positive and Gram-negative foodborne pathogenic bacteria[J]. Food Research International, 109, 325-333(2018).

    [7] Zhao Z B, Cheng C, Jin Y H et al. Inactivation effect of all-solid-state 228 nm far-UVC pulsed laser[J]. Chinese Journal of Lasers, 49, 1515001(2022).

    [8] Eischeid A C, Linden K G. Molecular indications of protein damage in adenoviruses after UV disinfection[J]. Applied and Environmental Microbiology, 77, 1145-1147(2011).

    [9] Beck S E, Hull N M, Poepping C et al. Wavelength-dependent damage to adenoviral proteins across the germicidal UV spectrum[J]. Environmental Science & Technology, 52, 223-229(2018).

    [10] Ha J W, Lee J I, Kang D H. Application of a 222-nm krypton-chlorine excilamp to control foodborne pathogens on sliced cheese surfaces and characterization of the bactericidal mechanisms[J]. International Journal of Food Microbiology, 243, 96-102(2017).

    [11] Sinha R P, Häder D P. UV-induced DNA damage and repair: a review[J]. Photochemical & Photobiological Sciences, 1, 225-236(2002).

    [12] Rastogi R P, Richa, Kumar A et al. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair[J]. Journal of Nucleic Acids, 2010, 592980(2010).

    [13] Beck S E, Rodriguez R A, Linden K G et al. Wavelength dependent UV inactivation and DNA damage of adenovirus as measured by cell culture infectivity and long range quantitative PCR[J]. Environmental Science & Technology, 48, 591-598(2014).

    [14] Britt A B. Repair of DNA damage induced by ultraviolet radiation[J]. Plant Physiology, 108, 891-896(1995).

    [15] Guo H L, Chu X N, Hu J Y. Effect of host cells on low- and medium-pressure UV inactivation of adenoviruses[J]. Applied and Environmental Microbiology, 76, 7068-7075(2010).

    [16] Schreier W J, Gilch P, Zinth W. Early events of DNA photodamage[J]. Annual Review of Physical Chemistry, 66, 497-519(2015).

    [17] Aboussekhra A, Thoma F. TATA-binding protein promotes the selective formation of UV-induced (6-4)-photoproducts and modulates DNA repair in the TATA box[J]. The EMBO Journal, 18, 433-443(1999).

    [18] Protić-Sabljić M, Kraemer K H. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 82, 6622-6626(1985).

    [19] Mitchell D L, Vaughan J E, Nairn R S. Inhibition of transient gene expression in Chinese hamster ovary cells by cyclobutane dimers and (6-4) photoproducts in transfected ultraviolet-irradiated plasmid DNA[J]. Plasmid, 21, 21-30(1989).

    [20] Lindahl T. Instability and decay of the primary structure of DNA[J]. Nature, 362, 709-715(1993).

    [21] Bolton J R, Cotton C A[M]. The ultraviolet disinfection handbook(2008).

    [22] Kim S T, Heelis P F, Sancar A. Energy transfer (deazaflavin → FADH2) and electron transfer (FADH2 → T <> T) kinetics in Anacystis nidulans photolyase[J]. Biochemistry, 31, 11244-11248(1992).

    [23] Essen L O, Klar T. Light-driven DNA repair by photolyases[J]. Cellular and Molecular Life Sciences CMLS, 63, 1266-1277(2006).

    [24] Zhang L W, Li M, Wu Q Y. Influence of ultraviolet-C on structure and function of Synechococcus sp. PCC 7942 photolyase[J]. Biochemistry (Moscow), 72, 540-544(2007).

    [25] Freeman S E, Blackett A D, Monteleone D C et al. Quantitation of radiation-, chemical-, or enzyme-induced single strand breaks in nonradioactive DNA by alkaline gel electrophoresis: application to pyrimidine dimers[J]. Analytical Biochemistry, 158, 119-129(1986).

    [26] Walker G C. SOS-regulated proteins in translesion DNA synthesis and mutagenesis[J]. Trends in Biochemical Sciences, 20, 416-420(1995).

    [27] Rajagopalan M, Lu C, Woodgate R et al. Activity of the purified mutagenesis proteins UmuC, UmuD’, and RecA in replicative bypass of an abasic DNA lesion by DNA polymerase Ⅲ[J]. Proceedings of the National Academy of Sciences of the United States of America, 89, 10777-10781(1992).

    [28] Zhai Y F, Tian J L, Shi J J et al. Inactivated effect and mechanisms of ultraviolet-C light-emitting diode on alicyclobacillus acidoterrestris[J]. Food Science, 43, 71-78(2022).

    [29] Kim D K, Kim S J, Kang D H. Bactericidal effect of 266 to 279 nm wavelength UVC-LEDs for inactivation of Gram positive and Gram negative foodborne pathogenic bacteria and yeasts[J]. Food Research International, 97, 280-287(2017).

    [30] Li M, Li J H, Yang Y L et al. Investigation of mouse hepatitis virus strain A59 inactivation under both ambient and cold environments reveals the mechanisms of infectivity reduction following UVC exposure[J]. Journal of Environmental Chemical Engineering, 10, 107206(2022).

    [31] Lo C W, Matsuura R, Iimura K et al. UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins[J]. Scientific Reports, 11, 1-11(2021).

    [32] Shin M, Kim S S, Kang D H. Combined treatment with a 222-nm krypton-chlorine excilamp and a 280-nm LED-UVC for inactivation of Salmonella Typhimurium and Listeria monocytogenes[J]. LWT, 131, 109715(2020).

    [33] Park S H, Kang J W, Kang D H. Inactivation of foodborne pathogens on fresh produce by combined treatment with UV-C radiation and chlorine dioxide gas, and mechanisms of synergistic inactivation[J]. Food Control, 92, 331-340(2018).

    [34] Yin F G, Zhu Y, Koutchma T et al. Inactivation and potential reactivation of pathogenic Escherichia coli O157: H7 in apple juice following ultraviolet light exposure at three monochromatic wavelengths[J]. Food Microbiology, 46, 329-335(2015).

    [35] Latarjet R. Introduction to research in ultraviolet photobiology: JOHN JAGGER[J]. Photochemistry and Photobiology, 7, 413(1968).

    [36] Lehmann A R. Biological effects of ultraviolet radiation[J]. Nature, 278, 484(1979).

    [37] Beck S E, Wright H B, Hargy T M et al. Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems[J]. Water Research, 70, 27-37(2015).

    [38] Fu C Y, Yang L W, Luo X L et al. Discussion on the efficacy of LED ultraviolet dose in killing Staphylococcus aureus[J]. Light and Textile Industry and Technology, 50, 6-7(2021).

    [39] Murashita S, Kawamura S, Koseki S. Inactivation of nonpathogenic Escherichia coli, Escherichia coli O157: H7, Salmonella enterica typhimurium, and Listeria monocytogenes in ice using a UVC light-emitting diode[J]. Journal of Food Protection, 80, 1198-1203(2017).

    [40] Song M X, Zhang J K, Ning N. Effect of ultraviolet dose on the photoreactivation of Escherichia coli[J]. Water Technology, 13, 6-8, 34(2019).

    [41] Bowker C, Sain A, Shatalov M et al. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system[J]. Water Research, 45, 2011-2019(2011).

    [42] Gopisetty V V S, Patras A, Pendyala B et al. UV‑C irradiation as an alternative treatment technique: study of its effect on microbial inactivation, cytotoxicity, and sensory properties in cranberry-flavored water[J]. Innovative Food Science & Emerging Technologies, 52, 66-74(2019).

    [43] Biasin M, Bianco A, Pareschi G et al. UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication[J]. Scientific Reports, 11, 1-7(2021).

    [44] Heilingloh C S, Aufderhorst U W, Schipper L et al. Susceptibility of SARS-CoV-2 to UV irradiation[J]. American Journal of Infection Control, 48, 1273-1275(2020).

    [45] Storm N, McKay L G A, Downs S N et al. Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation[J]. Scientific Reports, 10, 1-5(2020).

    [46] Ruetalo N, Businger R. Schindler M.Rapid, dose-dependent and efficient inactivation of surface dried SARS-CoV-2 by 254nm UV-C irradiation[J]. Euro Surveillance, 26, 2001718(2021).

    [47] Lytle C D, Sagripanti J L. Predicted inactivation of viruses of relevance to biodefense by solar radiation[J]. Journal of Virology, 79, 14244-14252(2005).

    [48] Pendyala B, Patras A, Pokharel B et al. Genomic modeling as an approach to identify surrogates for use in experimental validation of SARS-CoV-2 and HuNoV inactivation by UV-C treatment[J]. Frontiers in Microbiology, 11, 572331(2020).

    [49] Sagripanti J L, Lytle C D. Estimated inactivation of coronaviruses by solar radiation with special reference to COVID-19[J]. Photochemistry and Photobiology, 96, 731-737(2020).

    [50] Rockey N C, Henderson J B, Chin K et al. Predictive modeling of virus inactivation by UV[J]. Environmental Science & Technology, 55, 3322-3332(2021).

    [51] Barancheshme F, Philibert J, Noam-Amar N et al. Assessment of saliva interference with UV-based disinfection technologies[J]. Journal of Photochemistry and Photobiology B, Biology, 217, 112168(2021).

    [52] Xiang Q S, Dong S S, Fan L M et al. Bactericidal kinetics of ultraviolet C light-emitting diodes against bacteria on food contact materials and factors influencing it[J]. Food Science, 43, 17-25(2022).

    [53] Adhikari A, Syamaladevi R M, Killinger K et al. Ultraviolet-C light inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on organic fruit surfaces[J]. International Journal of Food Microbiology, 210, 136-142(2015).

    [54] Li C Y, Mi Q H, Feng J. Efficacy and safety evaluation of short-wave ultraviolet radiation in the adjuvant treatment of herpetic angina in children[J]. Chinese Journal of Practical Medicine, 49, 58-61(2022).

    [55] Liu L Y, Li J, Nie X Z et al. Efficacy and safety of shortwave ultraviolet in the treatment of herpetic stomatitis in children[J]. China Modern Doctor, 59, 82-85(2021).

    [56] Yang Q, Cai C J, Zheng X H. Observation on the therapeutic effect of short-wave ultraviolet radiation on oral ulcer in children with leukemia after chemotherapy[J]. Chinese Journal of Modern Drug Application, 13, 61-62(2019).

    [57] Hu F C. Short wave combined with ultraviolet irradiation for treatment of pediatric pneumonia[J]. Contemporary Medicine, 24, 151-152(2018).

    [58] Sun C H, Wang X N, Yao J N et al. Observation on therapeutic effect of short-wave ultraviolet therapeutic instrument on oral mucositis in patients with hematopoietic stem cell transplantation[J]. Shaanxi Medical Journal, 46, 236-237(2017).

    [59] Huang Y Q, Li N, Liu T M. Observation on the effect of short-wave ultraviolet irradiation in adjuvant treatment of residual burn wounds[J]. Guangdong Medical Journal, 38, 2496-2497, 2501(2017).

    [60] Fan L N, Zhang J, Wang Y L et al. Curative effect of UVB radiation treatment on inflammation of radioactive oral mucosa[J]. Modern Clinical Nursing, 15, 26-28(2016).

    [61] Wang J. Observation on therapeutic effect of ultraviolet irradiation on acute drug-induced phlebitis[J]. Chinese Journal of Practical Neruous Diseases, 18, 83-84(2015).

    [62] Chen R. Application effect of short-wave ultraviolet therapeutic instrument combined with nursing intervention in patients with oral mucositis after chemotherapy of ovarian cancer[J]. Medical Equipment, 34, 174-175(2021).

    [63] Zhang N N, Qiu E, Zhang Y F. Analysis of clinical effects of short-wave ultraviolet-assisted treatment of oral mucositis after hematopoietic stem cell transplant[J]. China & Foreign Medical Treatment, 39, 80-82(2020).

    [64] Zhu Y M. Application of short-wave ultraviolet radiation combined with routine debridement and dressing change in patients with poor wound healing after cesarean section[J]. Medical Journal of Chinese People’s Health, 31, 89-90(2019).

    [65] Tang M Y, Zhang L Y, Qi Y J et al. Treatment of 132 cases of herpes zoster with acyclovir plus short-wave ultraviolet radiation combined with magnetic therapy[J]. Shaanxi Medical Journal, 42, 487-488(2013).

    [66] Buonanno M, Stanislauskas M, Ponnaiya B et al. 207-nm UV light-a promising tool for safe low-cost reduction of surgical site infections. II: in‑vivo safety studies[J]. PLoS One, 11, e0138418(2016).

    [67] Buonanno M, Ponnaiya B, Welch D et al. Germicidal efficacy and mammalian skin safety of 222-nm UV light[J]. Radiation Research, 187, 483-491(2017).

    [68] Kaidzu S, Sugihara K, Sasaki M et al. Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light in Sprague-Dawley rats[J]. Free Radical Research, 53, 611-617(2019).

    [69] Yamano N, Kunisada M, Kaidzu S et al. Long-term effects of 222-nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation[J]. Photochemistry and Photobiology, 96, 853-862(2020).

    [70] Narita K, Asano K, Morimoto Y et al. Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse wounds[J]. Journal of Photochemistry and Photobiology B, Biology, 178, 10-18(2018).

    [71] Narita K, Asano K, Morimoto Y et al. Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses[J]. PLoS One, 13, e0201259(2018).

    [72] Ponnaiya B, Buonanno M, Welch D et al. Far-UVC light prevents MRSA infection of superficial wounds in vivo[J]. PLoS One, 13, e0192053(2018).

    [73] Goh J C, Fisher D, Hing E C H et al. Disinfection capabilities of a 222 nm wavelength ultraviolet lighting device: a pilot study[J]. Journal of Wound Care, 30, 96-104(2021).

    [74] Woods J A, Evans A, Forbes P D et al. The effect of 222-nm UVC phototesting on healthy volunteer skin: a pilot study[J]. Photoimmunology & Photomedicine, 31, 159-166(2015).

    [75] Fukui T, Niikura T, Oda T et al. Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans[J]. PLoS One, 15, e0235948(2020).

    Tools

    Get Citation

    Copy Citation Text

    Tao Zhu, Shunjiang Fu, Wei Xie, Huan Xu. UVC Sterilization Mechanism and Influencing Factors[J]. Chinese Journal of Lasers, 2023, 50(9): 0907209

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Diagnostics and Therapy

    Received: Dec. 19, 2022

    Accepted: Feb. 16, 2023

    Published Online: Apr. 24, 2023

    The Author Email: Zhu Tao (bamboozt@cumtb.edu.cn)

    DOI:10.3788/CJL221541

    Topics