Laser & Optoelectronics Progress, Volume. 55, Issue 9, 91603(2018)

Modulation Mechanism of P-Doping on Photoelectric Properties of Two-Dimensional SiC

Yan Wanjun1,2、*, Zhang Chunhong1,2, Qin Xinmao1,2, Zhang Zhongzheng1,2, and Zhou Shiyun1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(32)

    [1] [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [2] [2] Coleman J N, Lotya M, O′Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.

    [3] [3] Zeng Z, Yin Z, Huang X, et al. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication[J]. Angewandte Chemie International Edition, 2011, 50(47): 11093-11097.

    [4] [4] Zhang Z H, Guo W L. Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations[J]. Physical Review B, 2008, 77(7): 075403.

    [5] [5] Liu H, Neal A T, Zhu Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.

    [6] [6] Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

    [7] [7] Chen S J, Liu Y C, Shao C L, et al. Structural and optical properties of uniform ZnO nanosheets[J]. Advanced Materials, 2005, 17(5): 586-590.

    [8] [8] ahin H, Cahangirov S, Topsakal M, et al. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations[J]. Physical Review B, 2009, 80(15): 155453.

    [9] [9] Shi Z, Zhang Z, Kutana A, et al. Predicting two-dimensional silicon carbide monolayers[J]. ACS Nano, 2015, 9(10): 9802-9809.

    [10] [10] Yan W J, Xie Q, Qin X M, et al. First-principle analysis of photoelectric properties of silicon-carbon materials with graphene-like honeycomb structure[J]. Computational Materials Science, 2017, 126: 336-343.

    [11] [11] Chabi S, Chang H, Xia Y, et al. From graphene to silicon carbide: Ultrathin silicon carbide flakes[J]. Nanotechnology, 2016, 27(7): 075602.

    [12] [12] Cui H W, Zhang F C, Shao T T.First-principles study of electronic structure and optical properties of Sn-doped ZnO[J]. Acta Optica Sinica, 2016, 36(7): 0716002.

    [15] [15] Zeng F J, Tan Y Q, Yu Y S, et al. Electronic structure and optical property of Ag-Ce co-doped anatase TiO2[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071601.

    [16] [16] Zeng F J, Tan Y Q, Liang D M, et al. Study on first-principle of Ce/S co-doped anatase TiO2[J]. Laser & Optoelectronics Progress, 2016, 53(6): 061601.

    [17] [17] Shi R Q, Wu Y, Liu H, et al. First-principles calculations of P doped 4H-SiC supercell[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(6): 1617-1624.

    [18] [18] Cen W F, Yang Y Y, Fan M H, et al. Electronic structure and optical properties of orthorhombic P-doped Ca2Si calculated by the first-principles[J]. Acta Photonica Sinica, 2014, 43(8): 0816003.

    [19] [19] Zheng S K, Wu G H, Liu L. First-principles calculations of P-doped anatase TiO2[J]. Acta Physica Sinica, 2013, 62(4): 043102.

    [20] [20] Chen Z R, Xu Y H, He Z R. The structure, spectrum and electrical properties of phosphorus-doped graphene[J]. Journal of Sichuan University (Natural Science Edition), 2016, 53(3): 587-590.

    [21] [21] Segall M D, Lindan P J, Probert M A, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717.

    [22] [22] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865.

    [23] [23] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892.

    [24] [24] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188.

    [25] [25] Broyden C G. The convergence of a class of double-rank minimization algorithms: The new algorithm[J]. Journal of the Institute for Mathematics and Applications, 1970, 6: 222.

    [26] [26] Fletcher R. A new approach to variable metric algorithms[J]. The Computer Journal, 1970, 13(3): 317-322.

    [27] [27] Goldfarb D. A family of variable metric methods derived by variational means[J]. Mathematics of Computation, 1970, 24(109): 23-26.

    [28] [28] Shanno D F. Conditioning of quasi-Newton methods for function minimization[J]. Mathematics of Computation, 1970, 24 (111): 647-656.

    [29] [29] Yu Z Z, Hu M L, Zhang C X, et al. Transport properties of hybrid zigzag graphene and boron nitride nanoribbons[J]. The Journal of Physical Chemistry C, 2011, 115: 10836-10841.

    [30] [30] Zhou Y G, Yang P, Wang Z G, et al. Functionalized graphene nanoroads for quantum well device[J]. Applied Physics Letters, 2011, 98(9): 093108.

    [31] [31] Huda M N, Yan Y, Al-Jassim M M. On the existence of Si-C double bonded graphene-like layers[J]. Chemical Physics Letters, 2009, 479(4/6): 255-258.

    [32] [32] Fang R C. Solid state spectroscopy[M]. Hefei: University of Science and Technology of China Press, 2003: 55.

    Tools

    Get Citation

    Copy Citation Text

    Yan Wanjun, Zhang Chunhong, Qin Xinmao, Zhang Zhongzheng, Zhou Shiyun. Modulation Mechanism of P-Doping on Photoelectric Properties of Two-Dimensional SiC[J]. Laser & Optoelectronics Progress, 2018, 55(9): 91603

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Feb. 11, 2018

    Accepted: --

    Published Online: Sep. 8, 2018

    The Author Email: Yan Wanjun (yanwanjun7817@163.com)

    DOI:10.3788/lop55.091603

    Topics