Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0637012(2025)

Low-Light Image Enhancement Algorithm with Light Perception Enhancement and Dense Residual Denoising

Boran Yang1、*, Zilong Du1, Yong Wang1, Lijun Jiang1, and Wenming Yang2
Author Affiliations
  • 1School of Liangjiang Artificial Intelligence, Chongqing University of Technology, Chongqing 401135, China
  • 2Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong , China
  • show less
    Figures & Tables(11)
    Overall network architecture
    Multilevel feature extraction module. (a) Height axis multihead attention feature extraction; (b) width axis multihead attention feature extraction; (c) local feature extraction
    Multilevel attention fusion module
    Enhanced image denoising module
    Qualitative analysis results of image 1 on LOL dataset. (a) Input; (b) KinD; (c) KinD++; (d) ZeroDCE; (e) EnlightenGAN; (f) Uformer; (g) Restormer; (h) LLFormer; (i) GLLNet; (j) ground truth
    Qualitative analysis results of image 2 on LOL dataset. (a) Input; (b) KinD; (c) KinD++; (d) ZeroDCE; (e) EnlightenGAN; (f) Uformer; (g) Restormer; (h) LLFormer; (i) GLLNet; (j) ground truth
    Qualitative analysis results on MIT-Adobe FiveK dataset. (a) Input; (b) RetinexNet; (c) EnlightenGAN; (d) MIRNet; (e) DSLR; (f) Uformer; (g) Restormer; (h) LLFormer; (i) GLLNet; (j) ground truth
    • Table 1. Quantitative analysis results on LOL dataset

      View table

      Table 1. Quantitative analysis results on LOL dataset

      MethodPSNR /dB↑SSIM ↑LPIPS ↓
      RetinexNet16.770.560.742
      ZeroDCE13.550.540.222
      KinD20.870.800.160
      EnlightenGAN17.480.650.153
      KinD++21.300.800.159
      DLN21.940.810.121
      Uformer18.550.720.322
      Restormer22.370.810.142
      LLFormer22.540.790.111
      GLLNet23.530.820.096
      LLFormer(3000 epoch)23.430.810.094
      GLLNet(3000 epoch)24.290.830.087
    • Table 2. Quantitative analysis results on MIT-Adobe FiveK dataset

      View table

      Table 2. Quantitative analysis results on MIT-Adobe FiveK dataset

      MethodPSNR /dB↑SSIM ↑LPIPS ↓
      RetinexNet12.510.670.25
      ZeroDCE15.530.650.16
      DSLR20.240.830.08
      EnlightenGAN17.910.840.14
      KinD++21.990.800.12
      MIRNet23.730.900.04
      Uformer21.920.870.06
      Restormer24.920.900.06
      LLFormer25.210.900.04
      GLLNet25.460.910.03
      LLFormer (1000 epoch)25.360.900.033
      GLLNet (1000 epoch)25.580.920.030
    • Table 3. Results of ablation experiments on LOL dataset

      View table

      Table 3. Results of ablation experiments on LOL dataset

      MFEMAFEIDLOL
      HAEWAELFEPSNR /dB↑SSIM↑LPIPS↓
      23.150.800.098
      23.070.820.087
      23.780.820.087
      23.250.800.097
      23.720.810.089
      24.290.830.087
    • Table 4. Results of ablation experiments on MIT-Adobe FiveK dataset

      View table

      Table 4. Results of ablation experiments on MIT-Adobe FiveK dataset

      MFEMAFEIDMIT-Adobe FiveK
      HAEWAELFEPSNR /dB↑SSIM↑LPIPS↓
      25.470.890.032
      25.510.900.031
      25.480.900.031
      25.310.890.031
      25.430.900.030
      25.580.920.030
    Tools

    Get Citation

    Copy Citation Text

    Boran Yang, Zilong Du, Yong Wang, Lijun Jiang, Wenming Yang. Low-Light Image Enhancement Algorithm with Light Perception Enhancement and Dense Residual Denoising[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0637012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Aug. 13, 2024

    Accepted: Sep. 10, 2024

    Published Online: Mar. 13, 2025

    The Author Email:

    DOI:10.3788/LOP241837

    CSTR:32186.14.LOP241837

    Topics