Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0637012(2025)
Low-Light Image Enhancement Algorithm with Light Perception Enhancement and Dense Residual Denoising
Fig. 2. Multilevel feature extraction module. (a) Height axis multihead attention feature extraction; (b) width axis multihead attention feature extraction; (c) local feature extraction
Fig. 5. Qualitative analysis results of image 1 on LOL dataset. (a) Input; (b) KinD; (c) KinD++; (d) ZeroDCE; (e) EnlightenGAN; (f) Uformer; (g) Restormer; (h) LLFormer; (i) GLLNet; (j) ground truth
Fig. 6. Qualitative analysis results of image 2 on LOL dataset. (a) Input; (b) KinD; (c) KinD++; (d) ZeroDCE; (e) EnlightenGAN; (f) Uformer; (g) Restormer; (h) LLFormer; (i) GLLNet; (j) ground truth
Fig. 7. Qualitative analysis results on MIT-Adobe FiveK dataset. (a) Input; (b) RetinexNet; (c) EnlightenGAN; (d) MIRNet; (e) DSLR; (f) Uformer; (g) Restormer; (h) LLFormer; (i) GLLNet; (j) ground truth
|
|
|
|
Get Citation
Copy Citation Text
Boran Yang, Zilong Du, Yong Wang, Lijun Jiang, Wenming Yang. Low-Light Image Enhancement Algorithm with Light Perception Enhancement and Dense Residual Denoising[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0637012
Category: Digital Image Processing
Received: Aug. 13, 2024
Accepted: Sep. 10, 2024
Published Online: Mar. 13, 2025
The Author Email:
CSTR:32186.14.LOP241837