Chinese Journal of Lasers, Volume. 46, Issue 6, 0614039(2019)

Terahertz-Spectral Identification of Organic Compounds Based on Differential PCA-SVM Method

Junxiu Liu1, Bin Du1, Yuqiang Deng2, Jianwen Zhang3, and Haijiang Zhu1、*
Author Affiliations
  • 1 College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, China;
  • 2 Optics Division, National Institute of Metrology, Beijing 100029, China
  • 3 College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • show less
    Figures & Tables(9)
    Flow chart of organic compound identification
    Time-domain and frequency-domain spectra of benzoic acid and background signal. (a) Time-domain spectra; (b) frequency-domain spectra
    Absorption coefficient diagrams of four dangerous substances
    First-order differential data of benzoic acid
    First-order differential data of four dangerous substances
    • Table 1. Feature extraction results based on differential PCA

      View table

      Table 1. Feature extraction results based on differential PCA

      SubstanceOne-dimensionalTwo-dimensionalThree-dimensionalFour-dimensional
      TATP-13.604.524.544.54
      Black powder-14.504.834.834.83
      UN-15.595.195.205.20
      AN-15.945.295.335.33
      Dehydrated oxalic acid-13.094.344.384.37
      Dihydrated oxalic acid-13.824.594.624.62
      Stearic acid-10.773.583.603.60
      Sodium Stearate-11.473.813.833.83
      Citric acid monohydrate-13.284.44.444.44
      Citric acid dehydration-15.595.175.215.21
      Dihydrated sodium citrate-10.943.643.653.65
      Dehydrated sodium citrate-14.814.934.944.94
      Sodium citrate-10.263.403.433.43
      Uracil-11.683.883.913.90
      Sorbic acid-14.384.764.814.81
    • Table 2. Parameters obtained from training in SVM

      View table

      Table 2. Parameters obtained from training in SVM

      MethodDifferential PCALDAF&A
      Penalty factor83216
      Parameter γ4.88×10-41616
    • Table 3. Model identification results of 15 kinds of samples in test dataset

      View table

      Table 3. Model identification results of 15 kinds of samples in test dataset

      Number oftest samplesFeatureextractionmethodNumber ofidentifiedsamplesAccuracyrate /%
      15Differential PCA15100
      15LDA1386.67
      15F &A960
    • Table 4. Recognition performance of radial basis neural network

      View table

      Table 4. Recognition performance of radial basis neural network

      Sampletest setNumberof testsamplesNumber ofidentifiedsamplesAccuracyrate /%
      Substance indatabase151493.33
      Substance outof database5480.00
    Tools

    Get Citation

    Copy Citation Text

    Junxiu Liu, Bin Du, Yuqiang Deng, Jianwen Zhang, Haijiang Zhu. Terahertz-Spectral Identification of Organic Compounds Based on Differential PCA-SVM Method[J]. Chinese Journal of Lasers, 2019, 46(6): 0614039

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: Jan. 21, 2019

    Accepted: Apr. 8, 2019

    Published Online: Jun. 14, 2019

    The Author Email: Zhu Haijiang (zhuhj@mail.buct.edu.cn)

    DOI:10.3788/CJL201946.0614039

    Topics