Computer Engineering, Volume. 51, Issue 8, 364(2025)

Optical Chemical Structure Recognition Based on Multi-order Gated Aggregation Network

LIN Fan and LI Jianhua*
Author Affiliations
  • School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
  • show less
    References(28)

    [1] [1] CASEY R, BOYER S, HEALEY P, et al. Optical recognition of chemical graphics[C]//Proceedings of the 2nd International Conference on Document Analysis and Recognition. Washington D.C., USA: IEEE Press, 1993: 627-631.

    [2] [2] IBISON P, JACQUOT M, KAM F, et al. Chemical literature data extraction: the CLiDE project[J]. Journal of Chemical Information and Computer Sciences, 1993, 33(3): 338-344.

    [3] [3] FILIPPOV I V, NICKLAUS M C. Optical structure recognition software to recover chemical information: OSRA, an open source solution[J]. Journal of Chemical Information and Modeling, 2009, 49(3): 740-743.

    [6] [6] LI S, WANG Z, LIU Z, et al. MogaNet: multi-order gated aggregation network[C]//Proceedings of the 12th International Conference on Learning Representations. Washington D.C., USA: IEEE Press, 2024: 1-35.

    [7] [7] MERTSCHING B, HUND M, AZIZ Z. Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 5998-6008.

    [8] [8] WEININGER D. SMILES, a chemical language and information system. 1. introduction to methodology and encoding rules[J]. Journal of Chemical Information and Computer Sciences, 1988, 28(1): 31-36.

    [9] [9] O'BOYLE N M, DALKE A. DeepSMILES: an adaptation of SMILES for use in machine-learning of chemical structures[EB/OL]. [2023-12-20]. https://arxiv.org/abs/1802.04903v1

    [10] [10] KRENN M, HSE F, NIGAM A, et al. Self-referencing embedded strings: a 100% robust molecular string representation[J]. Machine Learning: Science and Technology, 2020, 1(4): 045024.

    [11] [11] STAKER J, MARSHALL K, ABEL R, et al. Molecular structure extraction from documents using deep learning[J]. Journal of Chemical Information and Modeling, 2019, 59(3): 1017-1029.

    [12] [12] KALCHBRENNER N, DANIHELKA I, GRAVES A. Grid long short-term memory[EB/OL]. [2023-12-20]. https://arxiv.org/abs/1507.01526.

    [13] [13] CLEVERT D A, LE T, WINTER R, et al. Img2Mol - accurate SMILES recognition from molecular graphical depictions[J]. Chemical Science, 2021, 12(42): 14174-14181.

    [15] [15] KHOKHLOV I, KRASNOV L, FEDOROV M V, et al. Image2SMILES: transformer-based molecular optical recognition engine[J]. Chemistry-Methods, 2022, 2(1): e202100069.

    [16] [16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778.

    [17] [17] VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: a neural image caption generator[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 3156-3164.

    [18] [18] RAJAN K, ZIELESNY A, STEINBECK C. DECIMER: towards deep learning for chemical image recognition[J]. Journal of Cheminformatics, 2020, 12(1): 65.

    [19] [19] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 2818-2826.

    [20] [20] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2023-12-20]. https://arxiv.org/abs/1412.3555.

    [21] [21] RAJAN K, ZIELESNY A, STEINBECK C. DECIMER 1.0: deep learning for chemical image recognition using transformers[J]. Journal of Cheminformatics, 2021, 13(1): 61.

    [22] [22] TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning. Cambridge, USA: MIT Press, 2019: 6105-6114.

    [23] [23] RAJAN K, BRINKHAUS H O, AGEA M I, et al. DECIMER. ai: an open platform for automated optical chemical structure identification, segmentation and recognition in scientific publications[J]. Nature Communications, 2023, 14(1): 5045-5062.

    [24] [24] TAN M, LE Q. EfficientNetV2: smaller models and faster training[C]//Proceedings of the 38th International Conference on Machine Learning. Cambridge, USA: MIT Press, 2021: 10096-10106.

    [25] [25] XU Z, LI J, YANG Z, et al. SwinOCSR: end-to-end optical chemical structure recognition using a Swin Transformer[J]. Journal of Cheminformatics, 2022, 14(1): 41.

    [26] [26] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 10012-10022.

    [27] [27] QIAN Y, GUO J, TU Z, et al. MolScribe: robust molecular structure recognition with image-to-graph generation[J]. Journal of Chemical Information and Modeling, 2023, 63(7): 1925-1934.

    [28] [28] RAJAN K, STEINBECK C, ZIELESNY A. Performance of chemical structure string representations for chemical image recognition using transformers[J]. Digital Discovery, 2022, 1(2): 84-90.

    [29] [29] KIM S, CHEN J, CHENG T J, et al. PubChem in 2021: new data content and improved Web interfaces[J]. Nucleic Acids Research, 2021, 49(1): 1388-1395.

    [30] [30] WILLIGHAGEN E L, MAYFIELD J W, ALVARSSON J, et al. The chemistry development kit v2.0: atom typing, depiction, molecular formulas, and substructure searching[J]. Journal of Cheminformatics, 2017, 9(1): 33.

    [31] [31] BRINKHAUS H O, RAJAN K, ZIELESNY A, et al. RanDepict: random chemical structure depiction generator[J]. Journal of Cheminformatics, 2022, 14(1): 31.

    Tools

    Get Citation

    Copy Citation Text

    LIN Fan, LI Jianhua. Optical Chemical Structure Recognition Based on Multi-order Gated Aggregation Network[J]. Computer Engineering, 2025, 51(8): 364

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 22, 2024

    Accepted: Aug. 26, 2025

    Published Online: Aug. 26, 2025

    The Author Email: LI Jianhua (jhli@ecust.edu.cn)

    DOI:10.19678/j.issn.1000-3428.0069275

    Topics