The Journal of Light Scattering, Volume. 33, Issue 1, 32(2021)
Assembly of Indium Tin Oxide Nanoarrays for Synergistically Enhanced Raman Scattering
[1] [1] Ding S Y, Yi J, Li J F et al. Nanostructure-Based Plasmon-Enhanced Raman Spectroscopy for Surface Analysis of Materials [J]. Nat. Rev. Mater., 2016, 1:16021.
[2] [2] Fleischmann M, Hendra P J, McQuillan A J Raman Spectra of Pyridine Adsorbed at a Silver Electrode [J]. Chem. Phys. Lett., 1974, 26: 163-166.
[3] [3] Hutter E, Fendler J H Exploitation of Localized Surface Plasmon Resonance [J]. Adv. Mater., 2004, 16: 1685-1706.
[4] [4] Fan X, Hao Q, Qiu T et al. Improving the Performance of Light-Emitting Diodes Via Plasmonic-Based Strategies [J]. J. Appl. Phys., 2020, 127: 040901.
[5] [5] Lin J, Shang Y, Li X et al. Ultrasensitive SERS Detection by Defect Engineering on Single Cu2O Superstructure Particle [J]. Adv. Mater., 2017, 29: 1604797.
[6] [6] Wang X, Shi W, Wang S et al. Two-Dimensional Amorphous TiO2 Nanosheets Enabling High-Efficiency Photoinduced Charge Transfer for Excellent SERS Activity [J]. J. Am. Chem. Soc., 2019, 141:5856-5862.
[7] [7] Wu H, Zhou X, Li J et al. Ultrathin Molybdenum Dioxide Nanosheets as Uniform and Reusable Surface-Enhanced Raman Spectroscopy Substrates with High Sensitivity [J]. Small, 2018, 14: 1802276.
[8] [8] Zhang Q, Li X, Ma Q et al. A Metallic Molybdenum Dioxide with High Stability for Surface Enhanced Raman Spectroscopy [J]. Nat. Commun., 2017, 8: 14903.
[9] [9] Yang L, Jiang X, Ruan W et al. Observation of Enhanced Raman Scattering for Molecules Adsorbed on TiO2 Nanoparticles: Charge-Transfer Contribution [J]. J. Phys. Chem. C, 2008, 112: 20095-20098.
[10] [10] Xue X, Ji W, Mao Z et al. Raman Investigation of Nanosized TiO2: Effect of Crystallite Size and Quantum Confinement [J]. J. Phys. Chem. C, 2012, 116: 8792-8797.
[11] [11] Han X X, Ji W, Zhao B et al. Semiconductor-Enhanced Raman Scattering: Active Nanomaterials and Applications [J]. Nanoscale, 2017, 9: 4847-4861.
[12] [12] Alessandri I, Lombardi J R Enhanced Raman Scattering with Dielectrics [J]. Chem. Rev., 2016, 116: 14921-14981.
[13] [13] Cong S, Yuan Y, Chen Z et al. Noble Metal-Comparable SERS Enhancement from Semiconducting Metal Oxides by Making Oxygen Vacancies [J]. Nat. Commun., 2015, 6: 7800.
[14] [14] Fan X, Li M, Hao Q et al. High SERS Sensitivity Enabled by Synergistically Enhanced Photoinduced Charge Transfer in Amorphous Nonstoichiometric Semiconducting Films [J]. Adv. Mater. Interfaces, 2019, 6: 1901133.
[15] [15] Hou X, Fan X, Wei P et al. Planar Transition Metal Oxides SERS Chips: A General Strategy [J]. J. Mater. Chem. C, 2019, 7: 11134-11141.
[16] [16] Li M, Fan X, Gao Y et al. W18O49/Monolayer MoS2 Heterojunction-Enhanced Raman Scattering [J]. J. Phys. Chem. Lett., 2019, 10: 4038-4044.
[17] [17] Lan L, Hou X, Gao Y et al. Inkjet-Printed Paper-Based Semiconducting Substrates for Surface-Enhanced Raman Spectroscopy [J]. Nanotechnology, 2019, 31: 055502.
[18] [18] Yang L, Peng Y, Yang Y et al. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect [J]. Adv. Sci., 2019, 6: 1900310.
[19] [19] Liu W, Bai H, Li X et al. Improved Surface-Enhanced Raman Spectroscopy Sensitivity on Metallic Tungsten Oxide by the Synergistic Effect of Surface Plasmon Resonance Coupling and Charge Transfer [J]. J. Phys. Chem. Lett., 2018, 9: 4096-4100.
[20] [20] Schlatmann A R, Floet D W, Hilberer A et al. Indium Contamination from the Indium-Tin-Oxide Electrode in Polymer Light-Emitting Diodes [J]. Appl. Phys. Lett., 1996, 69: 1764-1766.
[21] [21] Hao Q, Wang C, Huang H et al. Aluminum Plasmonic Photocatalysis [J]. Sci. Rep., 2015, 5: 15288.
[22] [22] Fan X, Hao Q, Jin R et al. Assembly of Gold Nanoparticles into Aluminum Nanobowl Array [J]. Sci. Rep., 2017, 7: 2322.
[23] [23] Fan X, Hao Q, Li M et al. Hotspots on the Move: Active Molecular Enrichment by Hierarchically Structured Micromotors for Ultrasensitive SERS Sensing [J]. ACS Appl. Mater. Interfaces, 2020, 12: 28783-28791.
[24] [24] Yang Y, Qiu T, Kong F et al. Interference Effects on Indium Tin Oxide Enhanced Raman Scattering [J]. J. Appl. Phys., 2012, 111: 033110.
[25] [25] Yang Y, Qiu T, Liu Z et al. Surface and Interference Co-enhanced Raman Scattering from Indium Tin Oxide Nanocap Arrays [J]. Appl. Surf. Sci., 2013, 280: 343-348.
[26] [26] Hildebrandt P, Stockburger M Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6g Adsorbed on Colloidal Silver [J]. J. Phys. Chem., 1984, 88: 5935-5944.
[27] [27] Lounis S D, Runnerstrom E L, Bergerud A et al. Influence of Dopant Distribution on the Plasmonic Properties of Indium Tin Oxide Nanocrystals [J]. J. Am. Chem. Soc., 2014, 136: 7110-7116.
[28] [28] Li S Q, Guo P, Zhang L et al. Infrared Plasmonics with Indium-Tin-Oxide Nanorod Arrays [J]. ACS Nano, 2011, 5: 9161-9170.
[29] [29] Lombardi J R, Birke R L A Unified Approach to Surface-enhanced Raman Spectroscopy [J]. J. Phys. Chem. C, 2008, 112: 5605-5617.
[30] [30] Lombardi J R, Birke R L Theory of Surface-enhanced Raman Scattering in Semiconductors [J]. J. Phys. Chem. C, 2014, 118: 11120-11130.
Get Citation
Copy Citation Text
SI Lifang, FAN Xingce, HOU Xiangyu, LI Guoqun, LONG Kailin, LUO Xiaoguang, NI Zhenhua, QIU Teng. Assembly of Indium Tin Oxide Nanoarrays for Synergistically Enhanced Raman Scattering[J]. The Journal of Light Scattering, 2021, 33(1): 32
Category:
Received: Dec. 17, 2020
Accepted: --
Published Online: Sep. 12, 2021
The Author Email: Xingce FAN (fanxingce@126.com)