Acta Photonica Sinica, Volume. 54, Issue 5, 0510002(2025)

Combining Generative Adversarial Network and Contrastive Learning for Infrared Image Generation

Guodong YU1, Jianguo ZHU2, Chunyang WANG1、*, Jianghai FENG1, Xubin FENG3, Shi LIU2, Pengyu XU1, Zhongqi LI1, and Xiaochen LIU1
Author Affiliations
  • 1PLA Army Unit 63869,Baicheng 137001,China
  • 2PLA Army Unit 63856,Baicheng 137001,China
  • 3Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an 710119,China
  • show less
    Figures & Tables(18)
    The overall architecture of CLGAN
    Detailed structure of the CLGAN generator
    Detailed structure of CFSA
    Detailed structure of MFRM
    Detailed structure of the discriminator
    Detailed structure of bidirectional contrastive learning
    Comparison of colorization results on the KAIST dataset
    Comparison of colorization results on the LLVIP dataset
    Comparison of adaptive results between the KAIST dataset and the LLVIP dataset
    Comparison of colorization results using different network structures
    Comparison of colorization results using different loss functions
    Comparison of colorization results on the FLIR dataset
    • Table 1. Implementation and optimization of CFSA

      View table
      View in Article

      Table 1. Implementation and optimization of CFSA

      def CFSA(Fx):

      F1 = Conv1×1(Fx

      F2 = ChannelAttention(GroupConvolution(Fx))+ Fx

      Qm = Linear(WindowPartition(F1))

      Qn = Linear(WindowPartition(F2))

      α,β = LearnableWeights()

      Q = αQm + βQn

      V= Linear(Concat(F1F2))

      d = Dimension(Q

      Attention = Softmax(Q @ QT / sqrt(d))

      Fout = Attention @ V

      Return Fout

    • Table 2. Implementation and optimization of MFRM

      View table
      View in Article

      Table 2. Implementation and optimization of MFRM

      def MFRM(Fx):

      Fx = Conv1×1(Fx

      F1F2F3F4 = split(Fx,num_groups=4)

      Ff1 = Conv1×1(F1

      Ff2 = Conv1×1(Conv3×3(F2))

      Ff3 = Conv1×1(ChannelAttention(F3))

      Ff4 = Conv1×1(SpatialAttention(F4))

      Y1 = Multiply(Ff1Ff2

      Y2 = Multiply(Ff1Ff3

      Y3 = Multiply(Ff1Ff4

      α,β,γ = LearnableWeights()

      Y = αY1 + βY2 + γY3

      Y = Conv1×1(Y

      Return Y

    • Table 3. Performance comparison of various comparison methods on KAIST and LLVIP datasets

      View table
      View in Article

      Table 3. Performance comparison of various comparison methods on KAIST and LLVIP datasets

      MethodKAIST DatasetLLVIP Dataset
      PSNR↑SSIM↑FID↓LPIPS↓PSNR↑SSIM↑FID↓LPIPS↓
      CUT27.7630.65256.180.257126.5490.53663.870.3354
      IRC28.6910.81354.870.192927.7420.61558.610.2912
      sRGB-TIR28.1050.73760.450.229327.1380.59258.380.3141
      MappingFormer28.9780.83351.570.185928.1640.63755.730.2781
      Proposed29.1950.86250.750.182428.3960.65152.930.2521
    • Table 4. Performance comparison of different network structures for colorization results

      View table
      View in Article

      Table 4. Performance comparison of different network structures for colorization results

      MethodNetwork structureEvaluation index
      RRAMCFSAMFRMPSNR↑SSIM↑FID↓LPIPS↓
      Structure1××28.2940.68065.300.2655
      Structure2××28.1300.65268.460.2862
      Structure3××27.9650.63967.840.2772
      Structure4×28.3740.73661.900.2171
      Structure5×28.5290.78956.310.2079
      Structure6×28.9340.85451.320.2061
      Structure729.1950.86250.750.1824
    • Table 5. Performance comparison of different loss functions for colorization results

      View table
      View in Article

      Table 5. Performance comparison of different loss functions for colorization results

      MethodLoss functionEvaluation index
      LGANLContrastiveLTransLSimPSNR↑SSIM↑FID↓LPIPS↓
      Loss1××28.5230.73163.370.2628
      Loss2×28.9840.80956.170.2135
      Loss3×29.0130.81653.680.2068
      Loss429.1950.86250.750.1824
    • Table 6. Performance comparison of different similarity loss weights for colorization results

      View table
      View in Article

      Table 6. Performance comparison of different similarity loss weights for colorization results

      λSimPSNR↑SSIM↑FID↓LPIPS↓
      128.5220.74669.530.267 1
      528.9480.81056.790.216 5
      1029.1950.86250.750.182 4
      1528.7350.75364.980.188 4
    Tools

    Get Citation

    Copy Citation Text

    Guodong YU, Jianguo ZHU, Chunyang WANG, Jianghai FENG, Xubin FENG, Shi LIU, Pengyu XU, Zhongqi LI, Xiaochen LIU. Combining Generative Adversarial Network and Contrastive Learning for Infrared Image Generation[J]. Acta Photonica Sinica, 2025, 54(5): 0510002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 30, 2024

    Accepted: Jan. 17, 2025

    Published Online: Jun. 18, 2025

    The Author Email: Chunyang WANG (fjh879211@163.com)

    DOI:10.3788/gzxb20255405.0510002

    Topics