Chinese Journal of Lasers, Volume. 49, Issue 18, 1806001(2022)
Secure Communication via Laser Chaos Synchronization Based on Reservoir Computing
[1] Ke J X, Yi L L, Yang Z et al. 32 Gb/s chaotic optical communications by deep-learning-based chaos synchronization[J]. Optics Letters, 44, 5776-5779(2019).
[2] Jiang N, Zhao A K, Wang Y J et al. Security-enhanced chaotic communications with optical temporal encryption based on phase modulation and phase-to-intensity conversion[J]. OSA Continuum, 2, 3422-3437(2019).
[3] Mi L, Hu S Q, Zhou T H et al. Long distance underwater laser communication system based on low-density parity check codes and pulse-position modulation[J]. Chinese Journal of Lasers, 45, 1006002(2018).
[4] Liu W D, Luo Z B, Li X et al. Optimized design of baffle for laser communication system on geostationary orbit[J]. Chinese Journal of Lasers, 46, 0206005(2019).
[5] Li X M, Wang L M, Li X et al. Optimization of integrated tilt-mirror for laser communication antenna[J]. Chinese Journal of Lasers, 48, 0106006(2021).
[6] Sun J, Huang P M, Yao Z S. Performance of satellite-to-ground laser communications under the influence of atmospheric turbulence and platform micro-vibration[J]. Laser & Optoelectronics Progress, 58, 0301003(2021).
[7] Yan S L. Theory and technique of cross transmittance and alternate parallel reception of laser chaos in secure communication[J]. Chinese Journal of Lasers, 47, 0906001(2020).
[8] Sun Y C, Mao X X, Wang A B. Phase chaos synchronization of semiconductor laser with open-loop unidirectional coupling configuration[J]. Chinese Journal of Lasers, 47, 1001003(2020).
[9] Wu M, Wang L S, Wang Y C et al. Research on chaos resynchronization time of vertical-cavity surface-emitting lasers[J]. Laser & Optoelectronics Progress, 57, 210607(2020).
[10] Cuomo K M, Oppenheim A V, Strogatz S H. Synchronization of Lorenz-based chaotic circuits with applications to communications[J]. IEEE Transactions on Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 40, 626-633(1993).
[11] Alvarez J. Synchronization in the Lorenz system: stability and robustness[J]. Nonlinear Dynamics, 10, 89-103(1996).
[12] Chen H C, Liau B Y, Hou Y Y. Hardware implementation of Lorenz circuit systems for secure chaotic communication applications[J]. Sensors, 13, 2494-2505(2013).
[13] Argyris A, Syvridis D, Larger L et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 438, 343-346(2005).
[14] Cui S Y, Zhang J Z. Chaotic secure communication based on single feedback phase modulation and channel transmission[J]. IEEE Photonics Journal, 11, 18900883(2019).
[15] Fischer I, Vicente R, Buldú J M et al. Zero-lag long-range synchronization via dynamical relaying[J]. Physical Review Letters, 97, 123902(2006).
[16] Jiang N, Pan W, Yan L S et al. Chaos synchronization and communication in mutually coupled semiconductor lasers driven by a third laser[J]. Journal of Lightwave Technology, 28, 1978-1986(2010).
[17] Felix A, Cammerer S, Dörner S et al. OFDM-autoencoder for end-to-end learning of communications systems[C], 56-60(2018).
[18] Kim M, Lee W, Yoon J et al. Toward the realization of encoder and decoder using deep neural networks[J]. IEEE Communications Magazine, 57, 57-63(2019).
[19] Cunillera A, Soriano M C, Fischer I. Cross-predicting the dynamics of an optically injected single-mode semiconductor laser using reservoir computing[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 29, 113113(2019).
[20] Weng T F, Yang H J, Gu C G et al. Synchronization of chaotic systems and their machine-learning models[J]. Physical Review E, 99, 042203(2019).
[21] Griffith A, Pomerance A, Gauthier D J. Forecasting chaotic systems with very low connectivity reservoir computers[J]. Chaos, 29, 123108(2019).
[22] Nakayama J, Kanno K, Uchida A. Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal[J]. Optics Express, 24, 8679-8692(2016).
[23] Chen X L, Weng T F, Gu C G et al. Synchronizing hyperchaotic subsystems with a single variable: a reservoir computing approach[J]. Physica A: Statistical Mechanics and Its Applications, 534, 122273(2019).
[24] Zhong D Z, Yang H, Xi J T et al. Predictive learning of multi-channel isochronal chaotic synchronization by utilizing parallel optical reservoir computers based on three laterally coupled semiconductor lasers with delay-time feedback[J]. Optics Express, 29, 5279-5294(2021).
[25] Zimmermann R S, Parlitz U. Observing spatio-temporal dynamics of excitable media using reservoir computing[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 28, 043118(2018).
[26] Zhu Q X, Ma H F, Lin W. Detecting unstable periodic orbits based only on time series: when adaptive delayed feedback control meets reservoir computing[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 29, 093125(2019).
[27] Antonik P, Duport F, Hermans M et al. Online training of an opto-electronic reservoir computer applied to real-time channel equalization[J]. IEEE Transactions on Neural Networks and Learning Systems, 28, 2686-2698(2017).
[28] Argyris A, Cantero J, Galletero M et al. Comparison of photonic reservoir computing systems for fiber transmission equalization[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 18964716(2020).
[29] Cai Q, Guo Y, Li P et al. Modulation format identification in fiber communications using single dynamical node-based photonic reservoir computing[J]. Photonics Research, 9, B1-B8(2020).
[30] Appeltant L, Soriano M C, van der Sande G et al. Information processing using a single dynamical node as complex system[J]. Nature Communications, 2, 468(2011).
[31] Pathak J, Hunt B, Girvan M et al. Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach[J]. Physical Review Letters, 120, 024102(2018).
[32] Lu Z X, Pathak J, Hunt B et al. Reservoir observers: model-free inference of unmeasured variables in chaotic systems[J]. Chaos, 27, 041102(2017).
[33] Pyle R, Rosenbaum R. A reservoir computing model of reward-modulated motor learning and automaticity[J]. Neural Computation, 31, 1430-1461(2019).
[34] Antonik P, Gulina M, Pauwels J et al. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography[J]. Physical Review E, 98, 012215(2018).
[35] Jiang N, Zhao A K, Liu S Q et al. Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback[J]. Optics Express, 26, 32404-32416(2018).
[36] Murakami A, Shore K A. Chaos-pass filtering in injection-locked semiconductor lasers[J]. Physical Review A, 72, 053810(2005).
[37] Paul J, Lee M W, Shore K A. Effect of chaos pass filtering on message decoding quality using chaotic external-cavity laser diodes[J]. Optics Letters, 29, 2497-2499(2004).
Get Citation
Copy Citation Text
Jiayue Liu, Jianguo Zhang, Chuangye Li, Yuncai Wang. Secure Communication via Laser Chaos Synchronization Based on Reservoir Computing[J]. Chinese Journal of Lasers, 2022, 49(18): 1806001
Category: Fiber optics and optical communication
Received: Dec. 1, 2021
Accepted: Jan. 20, 2022
Published Online: Aug. 10, 2022
The Author Email: Zhang Jianguo (zhangjianguo@tyut.edu.cn)