Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 2013(2025)

Morphology Control and Capacitive Properties of In Situ Ni-Doped CoMoO4 Electrode Materials

LI Mingwei, ZHANG Hongxu, and ZOU Yuhan
Author Affiliations
  • College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China
  • show less
    References(23)

    [1] [1] TANG Y Q, GUO W H, ZOU R Q. Nickel-based bimetallic battery- type materials for asymmetric supercapacitors[J]. Coord Chem Rev, 2022, 451: 214242.

    [2] [2] GUO T Z, ZHOU D, LIU W F, et al. Recent advances in all-in-one flexible supercapacitors[J]. Sci China Mater, 2021, 64(1): 27–45.

    [3] [3] ZHOU Q F, GONG Y, TAO K Y. Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor[J]. Electrochim Acta, 2019, 320: 134582.

    [4] [4] BALAJI T E, TANAYA DAS H, MAIYALAGAN T. Recent trends in bimetallic oxides and their composites as electrode materials for supercapacitor applications[J]. ChemElectroChem, 2021, 8(10): 1723–1746.

    [5] [5] SAHOO S, SHIM J J. Nanostructured 3D zinc cobaltite/nitrogen- doped reduced graphene oxide composite electrode for supercapacitor applications[J]. J Ind Eng Chem, 2017, 54: 205–217.

    [6] [6] IQBAL T, MUNIR R M, FAROOQ H, et al. Novel Fe doped NiO-based electrode material for photoactivated catalyst and supercapacitor application[J]. J Energy Storage, 2024, 103: 114284.

    [7] [7] LI Y, MA M Y, HUA X H, et al. Enhanced energy storage performance of iron molybdate by Ni doping[J]. Mater Chem Phys, 2021, 261: 124211.

    [8] [8] WANG G S, YAN Z X, XIANG M, et al. Versatile Mo-doped Ni(OH)2/carbon cloth integral electrode: Oxygen vacancy enrichment and conductivity enhancement for high-performance supercapacitor and methanol electro-oxidation[J]. Mater Today Chem, 2024, 42: 102358.

    [9] [9] RANMALE V B, KADAM L D, SHINDE T J. Exploring the influence of Ni doping thin films for supercapacitor application[J]. Energy Storage, 2024, 6(4): e637.

    [10] [10] JABEEN S, KUMAR P, SHEOKAND S, et al. Mesoporous Ni doped MnMoO4 nanoparticles for high performance asymmetric supercapacitors[J]. J Energy Storage, 2024, 93: 112464.

    [11] [11] LI M W, DU M D, ZOU Y H, et al. Synthesis and supercapacitor properties ofin situNi-doped MnMoO4 electrode material on acidizing pretreated nickel foam[J]. J Energy Storage, 2024, 97: 112791.

    [12] [12] LI Y, ZHANG S M, MA M Y, et al. Manganese-doped nickel molybdate nanostructures for high-performance asymmetric supercapacitors[J]. Chem Eng J, 2019, 372: 452–461.

    [13] [13] Sudhakaran M S P, Raju R, Youk J H. Polypyrrole-derived N-doped CNT nanocomposites decorated with CoNi alloy nanoparticles for high-performance supercapacitor electrodes[J]. Applied Surface Science, 2023, 619: 156796.

    [14] [14] WU Z X, FAN L Q, CHEN J J, et al. Amorphous Co-Mo-S nanospheres fabricatedviaroom-temperature vulcanization for asymmetric supercapacitors[J]. J Colloid Interface Sci, 2023, 649: 880–889.

    [15] [15] HUANG H F, LI C, YAN F X, et al. Bi-functional Ni-Co-Mo hybrid oxide/phosphide nanoarrays grown on Ni foam with enhanced charge storage and oxygen evolution reaction performance[J]. Appl Surf Sci, 2023, 623: 157079.

    [16] [16] XU Z H, SUN S S, HAN Y, et al. High-energy-density asymmetric supercapacitor based on a durable and stable manganese molybdate nanostructure electrode for energy storage systems[J]. ACS Appl Energy Mater, 2020, 3(6): 5393–5404.

    [17] [17] ZHANG Q, WANG G X, CHEN T P, et al. Fabrication of amorphous Co/Mo–MnSex electrode materials for high-performance hybrid supercapacitors[J]. New J Chem, 2023, 47(47): 21865–21874.

    [18] [18] MIAO C X, ZHOU C L, WANG H E, et al. Hollow Co–Mo–Se nanosheet arrays derived from metal-organic framework for high- performance supercapacitors[J]. J Power Sources, 2021, 490: 229532.

    [19] [19] ZHU J H, WANG Y, XU Y, et al. Synthesis of porous flower-like Ni-Co-Mo-S nanostructures on Ni foam for battery-supercapacitor hybrid devices[J]. Int J Energy Res, 2020, 44(4): 2864–2874.

    [20] [20] FAN L Q, PAN F, TU Q M, et al. Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor[J]. Int J Hydrog Energy, 2018, 43(52): 23372–23381.

    [21] [21] GHAEMI S P, MASOUDPANAH S M, ALAMOLHODA S. CTAB-assisted synthesis of porous cuboid NiCo2O4 powders for high-performance supercapacitor[J]. J Energy Storage, 2023, 67: 107635.

    [22] [22] LI Y F, QIU Z Z, QU M, et al. Mo-doped ZIF-67 derived Ni, Co, Mo trimetallic sulfide/carbon nanotubes for supercapacitors[J]. J Energy Storage, 2023, 73: 108997.

    [23] [23] MAO X Q, ZOU Y J, LIANG J, et al. Facile synthesis of hierarchical Co–Mo–O–S porous microspheres for high-performance supercapacitors[J]. Ceram Int, 2020, 46(2): 1448–1456.

    Tools

    Get Citation

    Copy Citation Text

    LI Mingwei, ZHANG Hongxu, ZOU Yuhan. Morphology Control and Capacitive Properties of In Situ Ni-Doped CoMoO4 Electrode Materials[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 2013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 18, 2024

    Accepted: Aug. 12, 2025

    Published Online: Aug. 12, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240808

    Topics