High Power Laser Science and Engineering, Volume. 4, Issue 4, 04000e44(2016)

Developing one-dimensional implosions for inertial confinement fusion science

J. L. Kline1、*, S. A. Yi1, A. N. Simakov1, R. E. Olson1, D. C. Wilson1, G. A. Kyrala1, T. S. Perry1, S. H. Batha1, E. L. Dewald2, J. E. Ralph2, D. J. Strozzi2, A. G. MacPhee2, D. A. Callahan2, D. Hinkel2, O. A. Hurricane2, R. J. Leeper1, A. B. Zylstra1, R. R. Peterson1, B. M. Haines1, L. Yin1, P. A. Bradley1, R. C. Shah1, T. Braun2, J. Biener2, B. J. Kozioziemski2, J. D. Sater2, M. M. Biener2, A. V. Hamza2, A. Nikroo2, L. F. Berzak Hopkins2, D. Ho2, S. LePape2, N. B. Meezan1, D. S. Montgomery1, W. S. Daughton1, E. C. Merritt1, T. Cardenas1, and E. S. Dodd
Author Affiliations
  • 1Los Alamos National Laboratory, Los Alamos, NM, USA
  • 2Lawrence Livermore National Laboratory, Livermore, CA, USA
  • show less
    Figures & Tables(7)
    Plot of radiation flux symmetry versus case-to-capsule ratio for Legendre modes P2 and P4 normalized by the flux on the capsule.
    Plots of the hohlraum cross sections showing the laser ray traces with the hohlraum density for a (a) 2200 and (b) $1290~\unicode[STIX]{x03BC}\text{m}$ outer diameter beryllium capsule. The yellow regions correspond to densities greater the $1/4$ critical for 351 nm light.
    Case-to-capsule ratio versus convergence ratio design space for 1D simulations for beryllium with both two and three shock pulse shapes. Plot includes the design point for wetted foam targets and typical ignition targets. The size of the points is proportional to neutron yield.
    (a) Pie diagram for the $1600~\unicode[STIX]{x03BC}\text{m}$ diameter capsule using a three shock pulse shape. (b) Radiation drive history for both the two and the three shock design using a 6.72 mm diameter hohlraum. (c) Laser power histories driving the two drives.
    Pie diagrams for (a) liquid layer and (b) ice layered[22] targets using HDC capsules.
    (a) X-ray image through the laser entrance hole of first liquid layered target fielded on NIF using liquid $D_{2}$. (b) Unwrapped image.
    (a) Example of a double shell target. (b) Example laser pulse shape for an indirect double shell design. (c) Example of a double shell implosion in Lagrangian coordinates showing the collisions of the two shells and compression of the inner shell.
    Tools

    Get Citation

    Copy Citation Text

    J. L. Kline, S. A. Yi, A. N. Simakov, R. E. Olson, D. C. Wilson, G. A. Kyrala, T. S. Perry, S. H. Batha, E. L. Dewald, J. E. Ralph, D. J. Strozzi, A. G. MacPhee, D. A. Callahan, D. Hinkel, O. A. Hurricane, R. J. Leeper, A. B. Zylstra, R. R. Peterson, B. M. Haines, L. Yin, P. A. Bradley, R. C. Shah, T. Braun, J. Biener, B. J. Kozioziemski, J. D. Sater, M. M. Biener, A. V. Hamza, A. Nikroo, L. F. Berzak Hopkins, D. Ho, S. LePape, N. B. Meezan, D. S. Montgomery, W. S. Daughton, E. C. Merritt, T. Cardenas, E. S. Dodd. Developing one-dimensional implosions for inertial confinement fusion science[J]. High Power Laser Science and Engineering, 2016, 4(4): 04000e44

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: HIGH ENERGY DENSITY PHYSICS AND HIGH POWER LASER

    Received: May. 3, 2016

    Accepted: Sep. 29, 2016

    Published Online: Jan. 19, 2017

    The Author Email: J. L. Kline (jkline@lanl.gov)

    DOI:10.1017/hpl.2016.43

    Topics