Photonic Sensors, Volume. 14, Issue 4, 240415(2024)

Fiber-Optic Biosensors for Cancer Theranostics: From in Vitro to in Vivo

Fangzhou JIN1, Zhiyuan XU2, Donglin CAO2, Yang RAN1,2、*, and Bai-Ou GUAN1
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
  • 2Department of Laboratory Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
  • show less
    References(157)

    [1] [1] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al., “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians, 2021, 71(3): 209–249.

    [2] [2] C. Xia, X. Dong, H. Li, M. Cao, D. Sun, S. He, et al., “Cancer statistics in China and United States, 2022: profiles, trends, and determinants,” Chinese Medical Journal, 2022, 135(05): 584–590.

    [3] [3] F. Bray, M. Laversanne, E. Weiderpass, and I. Soerjomataram, “The ever-increasing importance of cancer as a leading cause of premature death worldwide,” Cancer, 2021, 127(16): 3029–3030.

    [4] [4] M. F. Ullah and M. Aatif, “The footprints of cancer development: cancer biomarkers,” Cancer Treatment Reviews, 2009, 35(3): 193–200.

    [5] [5] D. Anwanwan, S. K. Singh, S. Singh, V. Saikam, and R. Singh, “Challenges in liver cancer and possible treatment approaches,” Biochimica et Biophysica Acta (BBA) ? Reviews on Cancer, 2020, 1873(1): 188314.

    [6] [6] P. Hohenberger and S. Gretschel, “Gastic cancer,” The Lancet, 2003, 362(9380): 305–315.

    [7] [7] S. Maman and I. P. Witz, “A history of exploring cancer in context,” Nature Reviews Cancer, 2018, 18(6): 359–376.

    [8] [8] C. Pucci, C. Martinelli, and G. Ciofani, “Innovative approaches for cancer treatment: current perspectives and new challenges,” Ecancermedicalscience, 2019, 13: 961.

    [9] [9] M. Vishwakarma and E. Piddini, “Outcompeting cancer,” Nature Reviews Cancer, 2020, 20(3): 187–198.

    [10] [10] H. Brody, “Cancer diagnosis,” Nature, 2020, 579(7800): S1.

    [11] [11] S. D. Alharthi, D. Bijukumar, S. Prasad, A. M. Khan, and M. T. Mathew, “Evolution in biosensors for cancers biomarkers detection: a review,” Journal of Bio- and Tribo-Corrosion, 2021, 7: 1–17.

    [12] [12] V. S. A. Jayanthi, A. B. Das, and U. Saxena, “Recent advances in biosensor development for the detection of cancer biomarkers,” Biosensors and Bioelectronics, 2017, 91: 15–23.

    [13] [13] D. Sun, T. Guo, Y. Ran, Y. Huang, and B. O. Guan, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosensors and Bioelectronics, 2014, 61: 541–546.

    [14] [14] D. Sun, T. Guo, and B. O. Guan, “Label-free detection of DNA hybridization using a reflective microfiber Bragg grating biosensor with self-assembly technique,” Journal of Lightwave Technology, 2017, 35(16): 3354–3359.

    [15] [15] D. Sun, L. P. Sun, T. Guo, and B. O. Guan, “Label-free thrombin detection using a tapered fiber-optic interferometric aptasensor,” Journal of Lightwave Technology, 2019, 37(11): 2756–2761.

    [16] [16] B. Luo, Z. Liu, X. Wang, S. Shi, N. Zhong, P. Ma, et al., “Dual-peak long period fiber grating coated with graphene oxide for label-free and specific assays of H5N1 virus,” Journal of Biophotonics, 2021, 14(1): e202000279.

    [17] [17] H. Khan, M. R. Shah, J. Barek, and M. I. Malik, “Cancer biomarkers and their biosensors: a comprehensive review,” TrAC Trends in Analytical Chemistry, 2022, 158: 116813.

    [18] [18] B. Kaur, S. Kumar, and B. K. Kaushik, “Recent advancements in optical biosensors for cancer detection,” Biosensors and Bioelectronics, 2022, 197: 113805.

    [19] [19] Y. Zhu, Q. Li, C. Wang, Y. Hao, N. Yang, M. Chen, et al., “Rational design of biomaterials to potentiate cancer thermal therapy,” Chemical Reviews, 2023, 123(11): 7326–7378.

    [20] [20] B. Mehrjou, Y. Wu, P. Liu, G. Wang, and P. K. Chu, “Design and properties of antimicrobial biomaterials surfaces,” Advanced Healthcare Materials, 2022, 12(16): 2202073.

    [21] [21] N. Ayyanar, G. T. Raja, M. Sharma, and D. S. Kumar, “Photonic crystal fiber-based refractive index sensor for early detection of cancer,” IEEE Sensors Journal, 2018, 18(17): 7093–7099.

    [22] [22] M. M. Eid, A. N. Z. Rashed, A. A. M. Bulbul, and E. Podder, “Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection,” Plasmonics, 2021, 16: 717–727.

    [23] [23] G. P. Mishra, D. Kumar, V. S. Chaudhary, and G. Murmu, “Cancer cell detection by a heart-shaped dual-core photonic crystal fiber sensor,” Applied Optics, 2020, 59(33): 10321–10329.

    [24] [24] A. Panda and P. P. Devi, “Photonic crystal biosensor for refractive index based cancerous cell detection,” Optical Fiber Technology, 2020, 54: 102123.

    [25] [25] M. A. Mollah, R. J. Usha, S. Tasnim, and K. Ahmed, “Detection of cancer affected cell using Sagnac interferometer based photonic crystal fiber refractive index sensor,” Optical and Quantum Electronics, 2020, 52: 1–12

    [26] [26] D. Sun, Y. Ran, and G. Wang, “Label-free detection of cancer biomarkers using an in-line taper fiber-optic interferometer and a fiber Bragg grating,” Sensors, 2017, 17(11): 2559.

    [27] [27] P. Kumaar and A. Sivabramanian, “Design and bulk sensitivity analysis of a silicon nitride photonic biosensor for cancer cell detection,” International Journal of Optics, 2022, 2022: 6085833.

    [28] [28] G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, et al., “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosensors and Bioelectronics, 2016, 80: 590–600.

    [29] [29] D. Tyagi, S. K. Mishra, B. Zou, C. Lin, T. Hao, G. Zhang, et al., “Nano-functionalized long-period fiber grating probe for disease-specific protein detection,” Journal of Materials Chemistry B, 2018, 6(3): 386–392.

    [30] [30] C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, et al., “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosensors and Bioelectronics, 2017, 92: 449–456.

    [31] [31] C. Liu, T. Lei, K. Ino, T. Matsue, N. Tao, and C. Z. Li, “Real-time monitoring biomarker expression of carcinoma cells by surface plasmon resonance biosensors,” Chemical Communications, 2012, 48(84): 10389–10391.

    [32] [32] H. Vaisocherová, V. M. Faca, A. D. Taylor, S. Hanash, and S. Jiang, “Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera,” Biosensors and Bioelectronics, 2009, 24(7): 2143–2148.

    [33] [33] B. Sciacca, A. Francois, P. Hoffmann, and T. M. Monro, “Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber,” Sensors and Actuators B: Chemical, 2013, 183: 454–458.

    [34] [34] B. Kaur, S. Kumar, and B. K. Kaushik, “MXenes- based fiber-optic SPR sensor for colorectal cancer diagnosis,” IEEE Sensors Journal, 2022, 22(7): 6661–6668.

    [35] [35] S. Mostufa, T. B. A. Akib, M. M. Rana, and M. R. Islam, “Highly sensitive TiO2/Au/graphene layer- based surface plasmon resonance biosensor for cancer detection,” Biosensors, 2022, 12(8): 603.

    [36] [36] M. Fan, Q. She, R. You, Y. Huang, J. Chen, H. Su, et al., “‘On-off’ SERS sensor triggered by IDO for non-interference and ultrasensitive quantitative detection of IDO,” Sensors and Actuators B: Chemical, 2021, 344: 130166.

    [37] [37] G. Wang, R. J. Lipert, M. Jain, S. Kaur, S. Chakraboty, M. P. Torres, et al., “Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering,” Analytical Chemistry, 2011, 83(7): 2554–2561.

    [38] [38] F. Beffara, J. Perumal, A. Puteri Mahyuddin, M. Choolani, S. A. Khan, J. L. Auguste, et al., “Development of highly reliable SERS-active photonic crystal fiber probe and its application in the detection of ovarian cancer biomarker in cyst fluid,” Journal of Biophotonics, 2020, 13(3): e201960120.

    [39] [39] S. Kim, W. Kim, A. Bang, J. Y. Song, J. H. Shin, and S. Choi, “Label-free breast cancer detection using fiber probe-based Raman spectrochemical biomarker-dominated profiles extracted from a mixture analysis algorithm,” Analytical Methods, 2021, 13(29): 3249–3255.

    [40] [40] Y. Shin, A. P. Perera, and M. K. Park, “Label-free DNA sensor for detection of bladder cancer biomarkers in urine,” Sensors and Actuators B: Chemical, 2013, 178: 200–206.

    [41] [41] L. Ali, M. U. Mohammed, M. Khan, A. H. B. Yousuf, and M. H. Chowdhury, “High-quality optical ring resonator-based biosensor for cancer detection,” IEEE Sensors Journal, 2019, 20(4): 1867–1875.

    [42] [42] T. Ayupova, M. Shaimerdenova, M. Sypabekova, L. Vangelista, and D. Tosi, “Picomolar detection of thrombin with fiber-optic ball resonator sensor using optical backscatter reflectometry,” Optik, 2021, 241: 166969.

    [43] [43] Z. Ashikbayeva, A. Bekmurzayeva, Z. Myrkhiyeva, N. Assylbekova, T. S. Atabaev, and D. Tosi, “Green-synthesized gold nanoparticle-based optical fiber ball resonator biosensor for cancer biomarker detection,” Optics & Laser Technology, 2023, 161: 109136.

    [44] [44] S. Padmanabhan, V. K. Shinoj, V. M. Murukeshan, and P. Padmanabhan, “Highly sensitive optical detection of specific protein in breast cancer cells using microstructured fiber in extremely low sample volume,” Journal of Biomedical Optics, 2010, 15(1): 017005.

    [45] [45] J. Yang, J. Huang, J. Huang, and L. Yang, “Ultra-sensitive detection of O-GlcNAc transferase based on micro-structured optical fiber biosensor with enhanced fluorescence collection,” Sensors and Actuators B: Chemical, 2022, 367: 132162.

    [46] [46] Y. Wu, M. Chen, J. Cai, Z. Xu, F. Jin, Y. Zhang, et al., “Sensitive and efficient fluorescent fiber-optic sensor for in-situ hypoxia detection in solid tumor,” IEEE Sensors Journal, 2022, 22(23): 22646–22653.

    [47] [47] M. Loyez, E. M. Hassan, M. Lobry, F. Liu, C. Caucheteur, R. Wattiez, et al., “Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification,” ACS Sensors, 2020, 5(2): 454–463.

    [48] [48] T. Denk?eken and ? . Ay?egül, “Determination of cancer progression in breast cells by fiber optic bioimpedance spectroscopy system,” Journal of Surgery and Medicine, 2020, 4(1): 84–88

    [49] [49] P. Xiao, Z. Sun, Y. Huang, W. Lin, Y. Ge, R. Xiao, et al., “Development of an optical microfiber immunosensor for prostate specific antigen analysis using a high-order-diffraction long period grating,” Optics Express, 2020, 28(11): 15783–15793.

    [50] [50] N. R. Ramanujam, I. Amiri, S. A. Taya, S. Olyaee, R. Udaiyakumar, A. Pasumpon Pandian, et al., “Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal,” Microsystem Technologies, 2019, 25: 189–196.

    [51] [51] A. H. Aly and Z. A. Zaky, “Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor,” Cryogenics, 2019, 104: 102991.

    [52] [52] B. Kaur, S. Kumar, and B. K. Kaushik, “2D materials-based fiber optic SPR biosensor for cancer detection at 1550 nm,” IEEE Sensors Journal, 2021, 21(21): 23957–23964.

    [53] [53] S. Mittal, A. Saharia, Y. Ismail, F. Petruccione, A. V. Bourdine, O. G. Morozov, et al., “Spiral shaped photonic crystal fiber-based surface plasmon resonance biosensor for cancer cell detection,” Photonics, 2023, 10(3): 230.

    [54] [54] J. P. Monteiro, J. H. de Oliveira, E. Radovanovic, A. G. Brolo, and E. M. Girotto, “Microfluidic plasmonic biosensor for breast cancer antigen detection,” Plasmonics, 2016, 11: 45–51.

    [55] [55] D. Sun, Y. Fu, and Y. Yang, “Label-free detection of breast cancer biomarker using silica microfiber interferometry,” Optics Communications, 2020, 463: 125375.

    [56] [56] S. Zhang, X. Pei, H. Gao, S. Chen, and J. Wang, “Metal-organic framework-based nanomaterials for biomedical applications,” Chinese Chemical Letters, 2020, 31(5): 1060–1070.

    [57] [57] M. De Goede, M. Dijkstra, R. Obregón, J. Ramón- Azcón, E. Martínez, L. Padilla, et al., “Al2O3 microring resonators for the detection of a cancer biomarker in undiluted urine,” Optics Express, 2019, 27(13): 18508–18521.

    [58] [58] P. Das, B. C. Behera, S. P. Dash, A. N. ESR, N. K. Sahoo, and S. K. Tripathy, “Co3O4 magnetic nanoparticles-coated optical fibers for sensing sialic acid,” ACS Applied Nano Materials, 2022, 5(7): 8973–8981.

    [59] [59] H. Li, T. Huang, L. Lu, H. Yuan, L. Zhang, H. Wang, et al., “Ultrasensitive detection of exosomes using an optical microfiber decorated with plasmonic MoSe2-supported gold nanorod nanointerfaces,” ACS Sensors, 2022, 7(7): 1926–1935.

    [60] [60] A. Iele, A. Ricciardi, C. Pecorella, A. Cirillo, F. Ficuciello, B. Siciliano, et al., “Miniaturized optical fiber probe for prostate cancer screening,” Biomedical Optics Express, 2021, 12(9): 5691–5703.

    [61] [61] L. Ni, W. K. Lin, A. Kasputis, D. Postiff, J. Siddiqui, M. J. Allaway, et al., “Assessment of prostate cancer progression using a translational needle photoacoustic sensing probe: preliminary study with intact human prostates ex-vivo,” Photoacoustics, 2022, 28: 100418.

    [62] [62] D. J. Evers, R. Nachabé, H. M. Klomp, J. W. van Sandick, M. W. Wouters, G. W. Lucassen, et al., “Diffuse reflectance spectroscopy: a new guidance tool for improvement of biopsy procedures in lung malignancies,” Clinical Lung Cancer, 2012, 13(6): 424–431

    [63] [63] L. De Boer, B. Molenkamp, T. Bydlon, B. Hendriks, J. Wesseling, H. Sterenborg, et al., “Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries,” Breast Cancer Research and Treatment, 2015, 152: 509–518.

    [64] [64] I. A. Bratchenko, D. N. Artemyev, O. O. Myakinin, Y. A. Khristoforova, A. A. Moryatov, S. V. Kozlov, et al., “Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near-infrared and visible regions,” Journal of Biomedical Optics, 2017, 22(2): 027005.

    [65] [65] R. Cicchi, A. Cosci, S. Rossari, D. Kapsokalyvas, E. Baria, V. Maio, et al., “Combined fluorescence-Raman spectroscopic setup for the diagnosis of melanocytic lesions,” Journal of Biophotonics, 2014, 7(1–2): 86–95.

    [66] [66] G. C. Langhout, J. W. Spliethoff, S. J. Schmitz, A. Aalbers, M. L. van Velthuysen, B. H. Hendriks, et al., “Differentiation of healthy and malignant tissue in colon cancer patients using optical spectroscopy: a tool for image-guided surgery,” Lasers in Surgery and Medicine, 2015, 47(7): 559–565.

    [67] [67] F. Placzek, E. C. Bautista, S. Kretschmer, L. M. Wurster, F. Knorr, G. González-Cerdas, et al., “Morpho-molecular ex vivo detection and grading of non-muscle-invasive bladder cancer using forward imaging probe based multimodal optical coherence tomography and Raman spectroscopy,” Analyst, 2020, 145(4): 1445–1456.

    [68] [68] M. Sharma, E. Marple, J. Reichenberg, and J. W. Tunnell, “Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications,” Review of Scientific Instruments, 2014, 85(8): 083101.

    [69] [69] L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, et al., “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” Journal of Biomedical Optics, 2014, 19(11): 117003.

    [70] [70] J. Schleusener, P. Gluszczynska, C. Reble, I. Gersonde, J. Helfmann, H. J. Cappius, et al., “Perturbation factors in the clinical handling of a fiber-coupled Raman probe for cutaneous in vivo diagnostic Raman spectroscopy,” Applied Spectroscopy, 2015, 69(2): 243–256.

    [71] [71] K. Lin, W. Zheng, C. M. Lim, and Z. Huang, “Real-time in vivo diagnosis of nasopharyngeal carcinoma using rapid fiber-optic Raman spectroscopy,” Theranostics, 2017, 7(14): 3517.

    [72] [72] K. Lin, W. Zheng, C. M. Lim, and Z. Huang, “Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy,” Biomedical Optics Express, 2016, 7(9): 3705–3715.

    [73] [73] J. Wang, K. Lin, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, et al., “Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy improves in vivo diagnosis of esophageal squamous cell carcinoma at endoscopy,” Scientific Reports, 2015, 5(1): 12957.

    [74] [74] B. Yu, A. Shah, V. K. Nagarajan, and D. G. Ferris, “Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe,” Biomedical Optics Express, 2014, 5(3): 675–689.

    [75] [75] T. P. Thomas, M. T. Myaing, J. Y. Ye, K. Candido, A. Kotlyar, J. Beals, et al., “Detection and analysis of tumor fluorescence using a two-photon optical fiber probe,” Biophysical Journal, 2004, 86(6): 3959–3965.

    [76] [76] T. P. Thomas, J. Y. Ye, Y. C. Chang, A. Kotlyar, Z. Cao, I. J. Majoros, et al., “Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe,” Journal of Biomedical Optics, 2008, 13(1): 014024.

    [77] [77] J. Desroches, M. Jermyn, M. Pinto, F. Picot, M. A. Tremblay, S. Obaid, et al., “A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy,” Scientific Reports, 2018, 8(1): 1792.

    [78] [78] J. W. Spliethoff, L. L. de Boer, M. A. Meier, W. Prevoo, J. de Jong, T. M. Bydlon, et al., “Spectral sensing for tissue diagnosis during lung biopsy procedures: the importance of an adequate internal reference and real-time feedback,” Lung Cancer, 2016, 98: 62–68.

    [79] [79] J. W. Spliethoff, W. Prevoo, M. A. Meier, J. de Jong, H. M. Klomp, D. J. Evers, et al., “Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: a clinical feasibility study,” Clinical Cancer Research, 2016, 22(2): 357–365.

    [80] [80] L. L. de Boer, B. H. Hendriks, F. van Duijnhoven, M. J. T. V. Peeters-Baas, K. van de Vijver, C. E. Loo, et al., “Using DRS during breast conserving surgery: identifying robust optical parameters and influence of inter-patient variation,” Biomedical Optics Express, 2016, 7(12): 5188–5200.

    [81] [81] L. L. de Boer, T. M. Bydlon, F. van Duijnhoven, M. J. T. Vranken Peeters, C. E. Loo, G. A. Winter-Warnars, et al., “Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery,” Journal of Translational Medicine, 2018, 16: 1–14.

    [82] [82] D. Lin, S. Qiu, W. Huang, J. Pan, Z. Xu, R. Chen, et al., “Autofluorescence and white light imaging- guided endoscopic Raman and diffuse reflectance spectroscopy for in vivo nasopharyngeal cancer detection,” Journal of Biophotonics, 2018, 11(4): e201700251.

    [83] [83] O. R. ??epanovi?, Z. Volynskaya, C. R. Kong, L. H. Galindo, R. R. Dasari, and M. S. Feld, “A multimodal spectroscopy system for real-time disease diagnosis,” Review of Scientific Instruments, 2009, 80(4): 043103.

    [84] [84] T. Zhang, Y. Zheng, C. Wang, Z. Mu, Y. Liu, and J. Lin, “A review of photonic crystal fiber sensor applications for different physical quantities,” Applied Spectroscopy Reviews, 2018, 53(6): 486–502.

    [85] [85] T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, 1997, 22(13): 961–963.

    [86] [86] R. Ahmed, M. M. Khan, R. Ahmmed, and A. Ahad, “Design, simulation & optimization of 2D photonic crystal power splitter,” Optics and Photonics Journal, 2013, 3(2A): 33337.

    [87] [87] M. De, T. K. Gangopadhyay, and V. K. Singh, “Prospects of photonic crystal fiber as physical sensor: an overview,” Sensors, 2019, 19(3): 464.

    [88] [88] M. A. Mollah, M. Yousufali, I. M. Ankan, M. M. Rahman, H. Sarker, and K. Chakrabarti, “Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer,” Sensing and Bio-Sensing Research, 2020, 29: 100344.

    [89] [89] S. Jindal, S. Sobti, M. Kumar, S. Sharma, and M. K. Pal, “Nanocavity-coupled photonic crystal waveguide as highly sensitive platform for cancer detection,” IEEE Sensors Journal, 2016, 16(10): 3705–3710.

    [90] [90] X. Li, N. Chen, X. Zhou, P. Gong, S. Wang, Y. Zhang, et al., “A review of specialty fiber biosensors based on interferometer configuration,” Journal of Biophotonics, 2021, 14(6): e202100068

    [91] [91] P. Kozma, F. Kehl, E. Ehrentreich-F?rster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: a comparative review,” Biosensors and Bioelectronics, 2014, 58: 287–307.

    [92] [92] V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science, 1997, 278(5339): 840–843.

    [93] [93] K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” Journal of Lightwave Technology, 2011, 29(13): 1926–1930.

    [94] [94] E. Song, X. Long, Q. Yang, F. Jin, X. Yue, Z. Li, et al., “Near-infrared microfiber Bragg grating for sensitive measurement of tension and bending,” Optics Express, 2023, 31(10): 15674–15681.

    [95] [95] N. Zhong, M. Zhao, L. Zhong, Q. Liao, X. Zhu, B. Luo, et al., “A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2,” Biosensors and Bioelectronics, 2016, 85: 876–882

    [96] [96] B. Luo, S. Wu, Z. Zhang, W. Zou, S. Shi, M. Zhao, et al., “Human heart failure biomarker immunosensor based on excessively tilted fiber gratings,” Biomedical Optics Express, 2017, 8(1): 57–67.

    [97] [97] J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Analytical and Bioanalytical Chemistry, 2007, 389: 1193–1199.

    [98] [98] C. Steinem, A. Janshoff, V. S. Y. Lin, N. H. V?lcker, and M. R. Ghadiri, “DNA hybridization-enhanced porous silicon corrosion: mechanistic investigations and prospect for optical interferometric biosensing,” Tetrahedron, 2004, 60(49): 11259–11267.

    [99] [99] N. B. Shah and T. M. Duncan, “Bio-layer interferometry for measuring kinetics of protein- protein interactions and allosteric ligand effects,” Journal of Visualized Experiments, 2014, 84: e51383.

    [100] [100] C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Optics Express, 2013, 21(3): 3055–3066.

    [101] [101] J. F. Masson, “Surface plasmon resonance clinical biosensors for medical diagnostics,” ACS Sensors, 2017, 2(1): 16–30.

    [102] [102] M. Mascini and S. Tombelli, “Biosensors for biomarkers in medical diagnostics,” Biomarkers, 2008, 13(7?8): 637?657.

    [103] [103] J. Chung, S. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sensors and Actuators B: Chemical, 2005, 111: 416–422.

    [104] [104] T. Riedel, C. Rodriguez-Emmenegger, A. de los Santos Pereira, A. Bědajánková, P. Jinoch, P. M. Boltovets, et al., “Diagnosis of Epstein-Barr virus infection in clinical serum samples by an SPR biosensor assay,” Biosensors and Bioelectronics, 2014, 55: 278–284.

    [105] [105] S. K. Metkar and K. Girigoswami, “Diagnostic biosensors in medicine – a review,” Biocatalysis and Agricultural Biotechnology, 2019, 17: 271–283.

    [106] [106] L. Liu, X. Zhang, Q. Zhu, K. Li, Y. Lu, X. Zhou, et al., “Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs,” Light: Science & Applications, 2021, 10(1): 181.

    [107] [107] Z. Chen, F. Zhang, Y. Lu, Y. Li, G. Liu, J. Shan, et al., “Bioelectronic modulation of single-wavelength localized surface plasmon resonance (LSPR) for the detection of electroactive biomolecules,” Chinese Chemical Letters, 2022, 33(6): 3144–3150.

    [108] [108] J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, 2003, 377: 528–539.

    [109] [109] P. Jahanshahi, E. Zalnezhad, S. D. Sekaran, and F. R. M. Adikan, “Rapid immunoglobulin M-based dengue diagnostic test using surface plasmon resonance biosensor,” Scientific Reports, 2014, 4(1): 3851.

    [110] [110] ? . Torun, ? . H. Boyac?, E. Temür, and U. Tamer, “Comparison of sensing strategies in SPR biosensor for rapid and sensitive enumeration of bacteria,” Biosensors and Bioelectronics, 2012, 37(1): 53–60.

    [111] [111] M. Perfézou, A. Turner, and A. Merko?i, “Cancer detection using nanoparticle-based sensors,” Chemical Society Reviews, 2012, 41(7): 2606–2622.

    [112] [112] Y. Xie, Y. Li, L. Niu, H. Wang, H. Qian, and W. Yao, “A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/ silver nanocomposite,” Talanta, 2012, 100: 32–37.

    [113] [113] H. Wang, X. Jiang, S. T. Lee, and Y. He, “Silicon nanohybrid-based surface-enhanced Raman scattering sensors,” Small, 2014, 10(22): 4455– 4468.

    [114] [114] X. Guo, J. Li, M. Arabi, X. Wang, Y. Wang, and L. Chen, “Molecular-imprinting-based surface- enhanced Raman scattering sensors,” ACS Sensors, 2020, 5(3): 601–619.

    [115] [115] R. Ranjan, E. N. Esimbekova, and V. A. Kratasyuk, “Rapid biosensing tools for cancer biomarkers,” Biosensors and Bioelectronics, 2017, 87: 918–930.

    [116] [116] X. Xin, N. Zhong, Q. Liao, Y. Cen, R. Wu, and Z. Wang, “High-sensitivity four-layer polymer fiber-optic evanescent wave sensor,” Biosensors and Bioelectronics, 2017, 91: 623–628.

    [117] [117] M. Strianese, M. Staiano, G. Ruggiero, T. Labella, C. Pellecchia, and S. D’Auria, “Fluorescence-based biosensors,” Spectroscopic Methods of Analysis: Methods and Protocols, 2012: 193–216.

    [118] [118] K. Girigoswami and N. Akhtar, “Nanobiosensors and fluorescence based biosensors: an overview,” International Journal of Nano Dimension, 2019, 10(1): 1–17.

    [119] [119] M. A. Badshah, N. Y. Koh, A. W. Zia, N. Abbas, Z. Zahra, and M. W. Saleem, “Recent developments in plasmonic nanostructures for metal enhanced fluorescence-based biosensing,” Nanomaterials, 2020, 10(9): 1749.

    [120] [120] C. Bettegowda, M. Sausen, R. Leary, I. Kinde, Y. Wang, N. Agrawal, et al., “Detection of circulating tumor DNA in early-and late-stage human malignancies,” Science Translational Medicine, 2014, 6(224): 224ra24.

    [121] [121] M. Dhar, J. Wong, J. Che, M. Matsumoto, T. Grogan, D. Elashoff, et al., “Evaluation of PD-L1 expression on vortex-isolated circulating tumor cells in metastatic lung cancer,” Scientific Reports, 2018, 8(1): 2592.

    [122] [122] D. A. Haber and V. E. Velculescu, “Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA,” Cancer Discovery, 2014, 4(6): 650–661.

    [123] [123] I. B. Hench, J. Hench, and M. Tolnay, “Liquid biopsy in clinical management of breast, lung, and colorectal cancer,” Frontiers in Medicine, 2018, 5: 00009.

    [124] [124] Y. Jiang and D. Wang, “Liquid biopsy in the OMICS era of tumor medicine,” Open Access Journal of Biomedical Engineering and Its Applications, 2018, 1(3): 115.

    [125] [125] W. Wang, S. Feng, I. T. Tai, G. Chen, R. Chen, and H. Zeng, “Blood test using surface-enhanced Raman spectroscopy with colloidal silver nanoparticle substrate to detect polyps and colorectal cancer (conference presentation),” Proceeding of SPIE, 2016, 9704: 97040A.

    [126] [126] L. Zhou, C. Liu, Z. Sun, H. Mao, L. Zhang, X. Yu, et al., “Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis,” Biosensors and Bioelectronics, 2019, 137: 140–147.

    [127] [127] V. S. Chaudhary, D. Kumar, B. P. Pandey, and S. Kumar, “Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters ? a review,” IEEE Sensors Journal, 2022, 23(2): 1012–1023.

    [128] [128] Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li, J. Li, et al., “Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics,” Nano-Micro Letters, 2022, 14(1): 61.

    [129] [129] M. Calcerrada, C. García-Ruiz, and M. González-Herráez, “Chemical and biochemical sensing applications of microstructured optical fiber-based systems,” Laser & Photonics Reviews, 2015, 9(6): 604–627.

    [130] [130] J. Horne, L. McLoughlin, B. Bridgers, and E. K. Wujcik, “Recent developments in nanofiber-based sensors for disease detection, immunosensing, and monitoring,” Sensors and Actuators Reports, 2020, 2(1): 100005.

    [131] [131] A. B. Seddon, “Potential for using mid-infrared light for non-invasive, early-detection of skin cancers in vivo,” Proceeding of SPIE, 2013, 8576(85760V): 170–179.

    [132] [132] B. Yu, V. K. Nagarajan, and D. G. Ferris, “Mobile fiber-optic sensor for detection of oral and cervical cancer in the developing world,” Mobile Health Technologies: Methods and Protocols, 2015: 155–170.

    [133] [133] J. W. Spliethoff, D. J. Evers, H. M. Klomp, J. W. van Sandick, M. W. Wouters, R. Nachabe, et al., “Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy,” Lung Cancer, 2013, 80(2): 165–171.

    [134] [134] S. A. Alqarni, W. G. Willmore, J. Albert, and C. W. Smelser, “Self-monitored and optically powered fiber-optic device for localized hyperthermia and controlled cell death in vitro,” Applied Optics, 2021, 60(8): 2400–2411.

    [135] [135] A. Hernández-Arenas, R. Pimentel-Domínguez, J. R. Vélez-Cordero, and J. Hernández-Cordero, “Fiber optic probe with functional polymer composites for hyperthermia,” Biomedical Optics Express, 2021, 12(8): 4730–4744.

    [136] [136] J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, et al., “Gold nanocages as photothermal transducers for cancer treatment,” Small, 2010, 6(7): 811–817.

    [137] [137] J. Hornef, C. M. Edelblute, K. H. Schoenbach, R. Heller, S. Guo, and C. Jiang, “Thermal analysis of infrared irradiation-assisted nanosecond-pulsed tumor ablation,” Scientific Reports, 2020, 10(1): 5122.

    [138] [138] M. B. Paiva, M. Bublik, D. J. Castro, M. Udewitz, M. B. Wang, L. P. Kowalski, et al., “Intratumor injections of cisplatin and laser thermal therapy for palliative treatment of recurrent cancer,” Photomedicine and Laser Surgery, 2005, 23(6): 531–535.

    [139] [139] M. N. Palumbo, O. Cervantes, C. Eugênio, F. T. Hortense, J. C. Ribeiro, A. A. P. Paolini, et al., “Intratumor cisplatin nephrotoxicity in combined laser-induced thermal therapy for cancer treatment,” Lasers in Surgery and Medicine, 2017, 49(8): 756–762.

    [140] [140] S. Kanekal, J. Joo, M. Bublik, A. Bababeygy, C. Loh, D. J. Castro, et al., “Retention of intratumor injections of cisplatinum in murine tumors and the impact on laser thermal therapy for cancer treatment,” European Archives of Oto-Rhino-Laryngology, 2009, 266: 279–284.

    [141] [141] J. H. Choi, H. Seo, J. H. Park, J. H. Son, D. I. Kim, J. Kim, et al., “Poly (D, L-lactic-co-glycolic acid) (PLGA) hollow fiber with segmental switchability of its chains sensitive to NIR light for synergistic cancer therapy,” Colloids and Surfaces B: Biointerfaces, 2019, 173: 258–265.

    [142] [142] H. Liu, Y. Fu, Y. Li, Z. Ren, X. Li, G. Han, et al., “A fibrous localized drug delivery platform with NIR-triggered and optically monitored drug release,” Langmuir, 2016, 32(35): 9083–9090.

    [143] [143] M. Arnfield, S. Gonzalez, M. Mcphee, J. Tulip, and P. Lea, “Cylindrical irradiator fiber tip for photodynamic therapy,” Lasers in Surgery and Medicine, 1986, 6(2): 150–154.

    [144] [144] Z. Meng, Z. Chen, G. Lu, X. Dong, J. Dai, X. Lou, et al., “Short-wavelength aggregation-induced emission photosensitizers for solid tumor therapy: Enhanced with white-light fiber optic,” International Journal of Nanomedicine, 2022: 6607–6619.

    [145] [145] M. Zamadar, G. Ghosh, A. Mahendran, M. Minnis, B. I. Kruft, A. Ghogare, et al., “Photosensitizer drug delivery via an optical fiber,” Journal of the American Chemical Society, 2011, 133(20): 7882–7891.

    [146] [146] A. A. Ghogare, I. Rizvi, T. Hasan, and A. Greer, “‘Pointsource’ delivery of a photosensitizer drug and singlet oxygen: eradication of glioma cells in vitro,” Photochemistry and Photobiology, 2014, 90(5): 1119–1125.

    [147] [147] V. Karimnia, F. J. Slack, and J. P. Celli, “Photodynamic therapy for pancreatic ductal adenocarcinoma,” Cancers, 2021, 13(17): 4354.

    [148] [148] R. Zeng, C. Liu, L. Li, X. Cai, R. Chen, and Z. Li, “Clinical efficacy of HiPorfin photodynamic therapy for advanced obstructive esophageal cancer,” Technology in Cancer Research & Treatment, 2020, 19: 1533033820930335.

    [149] [149] H. Aza?s, M. Baydoun, M. Moinard, O. Morales, L. Colombeau, B. Leroux, et al., “Intraperitoneal targeted photodynamic therapy for advanced epithelial ovarian cancer,” Photodiagnosis and Photodynamic Therapy, 2023, 41: 103404.

    [150] [150] Y. Duo, M. Suo, D. Zhu, Z. Li, Z. Zheng, and B. Z. Tang, “AIEgen-based bionic nanozymes for the interventional photodynamic therapy-based treatment of orthotopic colon cancer,” ACS Applied Materials & Interfaces, 2022, 14(23): 26394–26403.

    [151] [151] C. H. Ma, H. H. Ma, X. B. Deng, R. Yu, K. W. Song, K. K. Wei, et al., “Photodynamic therapy in combination with chemotherapy, targeted, and immunotherapy as a successful therapeutic approach for advanced gastric adenocarcinoma: a case report and literature review,” Photobiomodulation, Photomedicine, and Laser Surgery, 2022, 40(5): 308–314.

    [152] [152] H. Yu, S. C. Lee, G. Park, J. Kim, H. Kim, S. H. Choi, et al., “Development of a customized endoscopic dual-diffusing optical fiber probe for pancreatic cancer therapy: toward clinical use,” Photobiomodulation, Photomedicine, and Laser Surgery, 2022, 40(4): 280–286.

    [153] [153] R. K. Singh, A. G. Kurian, K. D. Patel, N. Mandakhbayar, N. H. Lee, J. C. Knowles, et al., “Label-free fluorescent mesoporous bioglass for drug delivery, optical triple-mode imaging, and photothermal/photodynamic synergistic cancer therapy,” ACS Applied Bio Materials, 2020, 3(4): 2218–2229.

    [154] [154] Y. Miyoshi, T. Nishimura, Y. Shimojo, K. Okayama, and K. Awazu, “Endoscopic image-guided laser treatment system based on fiber bundle laser steering,” Scientific Reports, 2023, 13(1): 2921.

    [155] [155] K. J. Francis and S. Manohar, “Photoacoustic imaging in percutaneous radiofrequency ablation: device guidance and ablation visualization,” Physics in Medicine & Biology, 2019, 64(18): 184001.

    [156] [156] S. Pang, A. Kapur, K. Zhou, P. Anastasiadis, N. Ballirano, A. J. Kim, et al., “Nanoparticle-assisted, image-guided laser interstitial thermal therapy for cancer treatment,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14(5): e1826.

    [157] [157] Y. Ran, Z. Xu, M. Chen, W. Wang, Y. Wu, J. Cai, et al., “Fiber-optic theranostics (FOT): interstitial fiber-optic needles for cancer sensing and therapy,” Advanced Science, 2022, 9(15): 2200456.

    Tools

    Get Citation

    Copy Citation Text

    Fangzhou JIN, Zhiyuan XU, Donglin CAO, Yang RAN, Bai-Ou GUAN. Fiber-Optic Biosensors for Cancer Theranostics: From in Vitro to in Vivo[J]. Photonic Sensors, 2024, 14(4): 240415

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 1, 2023

    Accepted: Oct. 23, 2023

    Published Online: Oct. 15, 2024

    The Author Email: RAN Yang (tranyang@jnu.edu.cn)

    DOI:10.1007/s13320-024-0706-4

    Topics