Acta Optica Sinica, Volume. 42, Issue 24, 2401001(2022)

Prediction of Tropospheric NO2 Profile Using CNN-SVR-Based MAX-DOAS

Yifeng Pan1, Xin Tian1,2, Pinhua Xie2,3,4、*, Ang Li2, Jin Xu2, Bo Ren2,4, Xiaohui Huang1, Wei Tian1, and Zijie Wang1
Author Affiliations
  • 1Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui , China
  • 2Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • 3CAS Center for Excellence in Regional Atmospheric Environment, Xiamen 361021, Fujian , China
  • 4School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui , China
  • show less
    Figures & Tables(12)
    Flow chart of MIV method
    Percentage of MIV value of different input variables in the sum of all input variables
    Frame of CNN-SVR hybrid model
    Comparison of NO2 profiles predicted by CNN-SVR model and retrieved by MAX-DOAS
    Monthly average profile of NO2 from July 2019 to June 2020
    Prediction error of CNN-SVR model under different AOD ranges
    • Table 1. RMSE values under different input variable systems

      View table

      Table 1. RMSE values under different input variable systems

      SystemInput variable systemRMSE
      F1x1x4x5x6x7x3x2x80.512
      F2x1x4x5x6x7x3x20.487
      F3x1x4x5x6x7x30.452
      F4x1x4x5x6x70.415
      F5x1x4x5x60.322
      F6x1x4x50.401
      F7x1x40.498
      F8x10.586
    • Table 2. Parameter setting of CNN

      View table

      Table 2. Parameter setting of CNN

      Network layerModel parameter setting
      Input layer685×11 spectral data matrix
      Convolution layer 164 1×1 convolution kernels;kernel_size:5
      Convolution layer 2128 1×1 convolution kernels;kernel_size:5
      Pool layer 1MaxPool;kernel_size:1;stride:2
      Convolution layer 3128 1×1 convolution kernels;kernel_size:5
      Pool layer 2MaxPool;kernel_size:1;stride:2
      Convolution layer 4256 1×1 convolution kernels;kernel_size:5
      Pool layer 3MaxPool;kernel_size:1;stride:2
      Convolution layer 5512 1×1 convolution kernels;kernel_size:5
      Pool layer 4(adaptive pooling layer)Output one-dimensional vector
      Full connection layerOutput 21 neurons
    • Table 3. Prediction results of CNN-SVR model test set under different training set samples

      View table

      Table 3. Prediction results of CNN-SVR model test set under different training set samples

      Ratio of training setSMAPE /%MAPE /%
      0.521.9723.41
      0.618.1119.33
      0.715.1316.24
      0.811.5512.41
      0.98.529.14
    • Table 4. MAPE and SMAPE under four prediction models

      View table

      Table 4. MAPE and SMAPE under four prediction models

      ModelMAPE /%SMAPE /%
      Training errorTest errorTraining errorTest error
      CNN12.5917.6311.6116.11
      SVR11.8215.1410.9214.28
      BP35.6841.4233.6339.21
      CNN-SVR7.939.147.258.52
    • Table 5. R2 under four prediction models

      View table

      Table 5. R2 under four prediction models

      ModelR2 in modeling setR2 in testing set
      CNN0.860.83
      SVR0.890.87
      BP0.810.77
      CNN-SVR0.950.93
    • Table 6. Prediction error range of CNN-SVR model under different AOD ranges

      View table

      Table 6. Prediction error range of CNN-SVR model under different AOD ranges

      AODPrediction MAPE range /%
      (0,0.5](3.17,7.63)
      (0.5,1.0](5.13,8.21)
      (1.0,1.5](6.73,9.16)
      (1.5,2.0](6.15,11.19)
      (2.0,2.5](7.59,11.80)
      (2.5,3.0](7.21,13.17)
      >3.0(9.71,16.23)
    Tools

    Get Citation

    Copy Citation Text

    Yifeng Pan, Xin Tian, Pinhua Xie, Ang Li, Jin Xu, Bo Ren, Xiaohui Huang, Wei Tian, Zijie Wang. Prediction of Tropospheric NO2 Profile Using CNN-SVR-Based MAX-DOAS[J]. Acta Optica Sinica, 2022, 42(24): 2401001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Mar. 10, 2022

    Accepted: May. 5, 2022

    Published Online: Dec. 14, 2022

    The Author Email: Xie Pinhua (phxie@aiofm.ac.cn)

    DOI:10.3788/AOS202242.2401001

    Topics