AEROSPACE SHANGHAI, Volume. 42, Issue 1, 38(2025)

Ultrasonic Grinding/milling Mechanism and Defect Restraint Method for Micron-scale Superalloy Honeycomb Cores

Haihang WANG*, Zhijian ZHANG, Ming CHEN, Guoqiang GUO, Chenguang WANG, Weiwei MING, and Qinglong AN
Author Affiliations
  • State Key Laboratory of Mechanical System and Vibration,School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai200240,China
  • show less
    Figures & Tables(14)
    Principle of dynamic sealing[5]
    Superalloy honeycomb core used in aero-engine seals
    Machining tools
    Diagram of ultrasonic grinding/milling machining with superalloy honeycomb cores
    Side milling/grinding cutting angle
    Milling/grinding force
    Milling effect of the superalloy honeycomb core (No.1~4)
    Grinding effect of the superalloy honeycomb core (No.5~8)
    Ultrasonic-assisted grinding effect of the superalloy honeycomb core (No.9~12)
    Effects of machining method and ultrasonic grinding on the burr length
    • Table 1. Chemical composition of GH536

      View table
      View in Article

      Table 1. Chemical composition of GH536

      化学元素含量/%
      C0.05~0.15
      Cr20.50~23.00
      Ni52.50~57.50
      Co0.50~2.50
      W0.20~1.00
      Mo8.00~10.00
      Al0.50
      Ti0.15
      Fe5.00
      B0.01
      Mn1.00
      Si1.00
      P0.03
      S0.02
      Cu0.50
    • Table 2. Material characteristics of GH536

      View table
      View in Article

      Table 2. Material characteristics of GH536

      密度/

      (g·cm-³)

      熔点/

      抗拉强度/MPa屈服强度/MPa伸长率/%硬度热膨胀系数/ ℃-1抗氧化耐腐蚀
      8.151 38093062030HRC3611.5×10-6

      900 ℃

      下良好

      良好
    • Table 3. Experimental parameters for machining the superalloy honeycomb core<sup>[<a class="aTag" href="#Ref_25" target="_self" style="display: inline;">25</a>]</sup>

      View table
      View in Article

      Table 3. Experimental parameters for machining the superalloy honeycomb core<sup>[<a class="aTag" href="#Ref_25" target="_self" style="display: inline;">25</a>]</sup>

      序号刀具超声辅助转速/(m·min-1进给速度/(mm·min-1切深/mm
      1铣刀无超声702000.1
      2铣刀无超声702000.2
      3铣刀无超声702000.3
      4铣刀无超声702000.4
      5砂轮无超声702000.1
      6砂轮无超声702000.2
      7砂轮无超声702000.3
      8砂轮无超声702000.4
      9砂轮超声辅助702000.1
      10砂轮超声辅助702000.2
      11砂轮超声辅助702000.3
      12砂轮超声辅助702000.4
    • Table 4. Burr lengths under different machining conditions

      View table
      View in Article

      Table 4. Burr lengths under different machining conditions

      序号刀具超声辅助转速/(m·min-1进给速度/(mm·min-1切深/mm毛刺长度/μm
      1铣刀702000.150.515 87
      2铣刀702000.279.898 65
      3铣刀702000.3131.859 80
      4铣刀702000.4159.925 10
      5砂轮702000.166.948 20
      6砂轮702000.285.620 30
      7砂轮702000.3142.257 40
      8砂轮702000.4189.676 60
      9砂轮702000.124.323 38
      10砂轮702000.250.933 77
      11砂轮702000.391.196 19
      12砂轮702000.499.822 76
    Tools

    Get Citation

    Copy Citation Text

    Haihang WANG, Zhijian ZHANG, Ming CHEN, Guoqiang GUO, Chenguang WANG, Weiwei MING, Qinglong AN. Ultrasonic Grinding/milling Mechanism and Defect Restraint Method for Micron-scale Superalloy Honeycomb Cores[J]. AEROSPACE SHANGHAI, 2025, 42(1): 38

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integration of Material Structure and Function

    Received: Dec. 20, 2024

    Accepted: --

    Published Online: Apr. 2, 2025

    The Author Email:

    DOI:10.19328/j.cnki.2096-8655.2025.01.004

    Topics