Optoelectronics Letters, Volume. 21, Issue 7, 391(2025)
Research on conduction band offset of CZTSSe solar cell with double absorber layers
[1] [1] SADANAND, DWIVEDI D K. Theoretical investigation on enhancement of output performance of CZTSSe based solar cell[J]. Solar energy, 2019, 193: 442-451.
[2] [2] LIU W, LI H T, QIAO B, et al. Highly efficient CIGS solar cells based on a new CIGS bandgap gradient design characterized by numerical simulation[J]. Solar energy, 2022, 233: 337-344.
[3] [3] WANG Y P, WANG J, LI H R, et al. wxAMPS theoretical study of the bandgap structure of CZTS thin film to improve the device performance[J]. Optoelectronics letters, 2021, 17(7): 475-481.
[4] [4] BENZETTA A E, ABDERREZEK M, DJEGHLAL M E. Numerical study of CZTS/CZTSSe tandem thin film solar cell using SCAPS-1D[J]. Optik, 2021, 242: 167320.
[5] [5] PRABHU S, PANDEY S K, CHAKRABARTI S. Theoretical investigations of band alignments and SnSe BSF layer for low-cost, non-toxic, high-efficiency CZTSSe solar cell[J]. Solar energy, 2021, 226: 288-296.
[6] [6] SIMYA O K, MAHABOOBBATCHA A, BALACHANDER K. Compositional grading of CZTSSe alloy using exponential and uniform grading laws in SCAPS-ID simulation[J]. Superlattices and microstructures, 2016, 92: 285-293.
[7] [7] CHADEL M, CHADEL A, BOUZAKI M M, et al. Optimization by simulation of the nature of the buffer, the gap profile of the absorber and the thickness of the various layers in CZTSSe solar cells[J]. Materials research express, 2017, 4(11): 115503.
[8] [8] NREL: best research-cell efficiencies[EB/OL]. [2023-06-26]. https://www.nrel.gov/pv/cell-efficiency.html.
[9] [9] GOHRI S, MADAN J, PANDEY R, et al. Performance analysis for SnS- and Sn2S3-based back surface field CZTSSe solar cell: a simulation study[J]. Journal of electronic materials, 2021, 50(11): 6318-6328.
[10] [10] BIBI B, FARHADI B, ASGHAR H, et al. Effect and optimization of the Zn3P2 back surface field on the efficiency of CZTS/CZTSSe tandem solar cell: a computational approach[J]. Journal of physics D: applied physics, 2023, 56(2): 25502.
[11] [11] BENZETTA A, ABDERREZEK M, DJEGHLAL M E. Comparative study on Cu2ZnSn(S,Se)4 based thin film solar cell performances by adding various back surface field (BSF) layers[J]. Chinese journal of physics, 2020, 63: 231-239.
[12] [12] KANNAUJIYA A, PATEL A K, KANNAUJIYA S, et al. Efficient CZTSSe thin film solar cell employing MoTe2/MoS2 as hole transport layer[J]. Micro and nanostructures, 2022, 169: 207356.
[13] [13] OMRANI M K, MINBASHI M, MEMARIAN N, et al. Improve the performance of CZTSSe solar cells by applying a SnS BSF layer[J]. Solid-state electronics, 2018, 141: 50-57.
[14] [14] ET-TAYA L, OUSLIMANE T, BENAMI A. Numerical analysis of earth-abundant Cu2ZnSn(SxSe1-x)4 solar cells based on spectroscopic ellipsometry results by using SCAPS-1D[J]. Solar energy, 2020, 201: 827-835.
[15] [15] KUMAR A. Theoretical analysis of CZTS/CZTSSe tandem solar cell[J]. Optical and quantum electronics, 2021, 53(9): 528.
[16] [16] CHEROUANA A, LABBANI R. Study of CZTS and CZTSSe solar cells for buffer layers selection[J]. Applied surface science, 2017, 424: 251-255.
[17] [17] AMIRI S, DEHGHANI S, SAFAIEE R. Theoretical study of graded bandgap CZTSSe solar cells with two absorber layers[J]. Optical and quantum electronics, 2020, 52(6): 323.
[18] [18] ET-TAYA L, BENAMI A, OUSLIMANE T. Study of CZTSSe-based solar cells with different ETMs by SCAPS[J]. Sustainability, 2022, 14(3): 1916.
[19] [19] WU X F, HAO L S, WEI Z Q, et al. Numerical simulations on CZTSSe-based solar cells with GaSe as an alternative buffer layer using SCAPS-1D[J]. ECS journal of solid state science and technology, 2022, 2162: 8769-8777.
Get Citation
Copy Citation Text
HU Xiaofeng, XUE Yuming, DAI Hongli, WANG Luoxin, NI Meng, BAI Xin. Research on conduction band offset of CZTSSe solar cell with double absorber layers[J]. Optoelectronics Letters, 2025, 21(7): 391
Received: Jul. 20, 2023
Accepted: Jul. 24, 2025
Published Online: Jul. 24, 2025
The Author Email: