Acta Optica Sinica, Volume. 43, Issue 19, 1923001(2023)

Slow-Light Lithium Niobate Electro-Optic Modulators with Spoof Surface Plasmon Polaritons Electrodes

Guangyao Xu, Xiaofei Ma, Chong Sheng, and Hui Liu*
Author Affiliations
  • Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
  • show less
    References(28)

    [1] Streshinsky M, Ding R, Liu Y et al. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm[J]. Optics Express, 21, 30350-30357(2013).

    [2] Azadeh S S, Merget F, Romero-García S et al. Low V(π) Silicon photonics modulators with highly linear epitaxially grown phase shifters[J]. Optics Express, 23, 23526-23550(2015).

    [3] Ogiso Y, Ozaki J, Ueda Y et al. Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure[J]. Journal of Lightwave Technology, 35, 1450-1455(2017).

    [4] Alloatti L, Palmer R, Diebold S et al. 100 GHz silicon-organic hybrid modulator[J]. Light: Science & Applications, 3, e173(2014).

    [5] Haffner C, Heni W, Fedoryshyn Y et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale[J]. Nature Photonics, 9, 525-528(2015).

    [6] Mercante A J, Yao P, Shi S Y et al. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon[J]. Optics Express, 24, 15590-15595(2016).

    [7] Wang C, Zhang M, Stern B et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 26, 1547-1555(2018).

    [8] Rao A, Patil A, Rabiei P et al. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz[J]. Optics Letters, 41, 5700-5703(2016).

    [9] Ayata M, Fedoryshyn Y, Heni W et al. High-speed plasmonic modulator in a single metal layer[J]. Science, 358, 630-632(2017).

    [10] Wooten E L, Kissa K M, Yi-Yan A et al. A review of lithium niobate modulators for fiber-optic communications systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 69-82(2000).

    [11] Schmidt R V, Kaminow I P. Metal-diffused optical waveguides in LiNbO3[J]. Applied Physics Letters, 25, 458-460(1974).

    [12] Liang H X, Luo R, He Y et al. High-quality lithium niobate photonic crystal nanocavities[J]. Optica, 4, 1251-1258(2017).

    [13] Zhang M, Wang C, Cheng R et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 4, 1536-1537(2017).

    [14] Wang C, Zhang M, Chen X et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).

    [15] He M B, Xu M Y, Ren Y X et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s–1 and beyond[J]. Nature Photonics, 13, 359-364(2019).

    [16] Xu M Y, He M B, Zhang H G et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nature Communications, 11, 3911(2020).

    [17] Zhang M, Wang C, Kharel P et al. Integrated lithium niobate electro-optic modulators: when performance meets scalability[J]. Optica, 8, 652-667(2021).

    [18] Zong X M, Huang C Y, Sheng C et al. Rainbow capture and broadband nonlinearity in lithium niobate conversion optical waveguide[J]. Acta Optica Sinica, 42, 2126012(2022).

    [19] Kharel P, Reimer C, Luke K et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Optica, 8, 357-363(2021).

    [20] Wang Z, Chen G X, Ruan Z L et al. Silicon–lithium niobate hybrid intensity and coherent modulators using a periodic capacitively loaded traveling-wave electrode[J]. ACS Photonics, 9, 2668-2675(2022).

    [21] Xue Y, Gan R F, Chen K X et al. Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate[J]. Optica, 9, 1131-1137(2022).

    [22] Li M X, Ling J W, He Y et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 11, 4123(2020).

    [23] Pan B C, Liu H X, Xu H C et al. Ultra-compact lithium niobate microcavity electro-optic modulator beyond 110 GHz[J]. Chip, 1, 100029(2022).

    [24] Huang H J, Han X, Balčytis A et al. Non-resonant recirculating light phase modulator[J]. APL Photonics, 7, 106102(2022).

    [25] Gao X, Zhou L A, Liao Z et al. An ultra-wideband surface plasmonic filter in microwave frequency[J]. Applied Physics Letters, 104, 191603(2014).

    [26] Tang W X, Zhang H C, Ma H F et al. Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies[J]. Advanced Optical Materials, 7, 1800421(2019).

    [27] Garcia-Vidal F J, Fernández-Domínguez A I, Martin-Moreno L et al. Spoof surface plasmon photonics[J]. Reviews of Modern Physics, 94, 025004(2022).

    [28] Dong J L, Tomasino A, Balistreri G et al. Versatile metal-wire waveguides for broadband terahertz signal processing and multiplexing[J]. Nature Communications, 13, 741(2022).

    Tools

    Get Citation

    Copy Citation Text

    Guangyao Xu, Xiaofei Ma, Chong Sheng, Hui Liu. Slow-Light Lithium Niobate Electro-Optic Modulators with Spoof Surface Plasmon Polaritons Electrodes[J]. Acta Optica Sinica, 2023, 43(19): 1923001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Apr. 10, 2023

    Accepted: May. 10, 2023

    Published Online: Oct. 12, 2023

    The Author Email: Hui Liu (liuhui@nju.edu.cn)

    DOI:10.3788/AOS230790

    Topics