Laser & Optoelectronics Progress, Volume. 59, Issue 6, 0617004(2022)

Research Progress and Prospect of Microwave-Induced Thermoacoustic Imaging Technology

Shanxiang Zhang1,2,4, Xiaoyu Tang1,2,4, and Huan Qin1,2,3,4、*
Author Affiliations
  • 1Key Laboratory of Laser Life Sciences, Ministry of Education, South China Normal University, Guangzhou , Guangdong 510631, China
  • 2Guangdong Provincial Key Laboratory of Laser Life Sciences, Guangzhou , Guangdong 510631, China
  • 3Guangzhou Key Laboratory of Spectral Analysis and Functional Probe, Guangzhou , Guangdong 510631, China
  • 4College of Biophotonics, South China Normal University, Guangzhou , Guangdong 510631, China
  • show less
    Figures & Tables(17)
    Magnetron mode microwave source.(a) Schematic of the magnetron modulation mode; (b) typical magnetron modulation mode microwave generator[78]; (c) top view and side view of the miniaturized microwave generator[115]; (d) schematic of a small MTAI system115]
    High voltage discharge mode microwave source.(a) Schematic of high voltage discharge mode; (b) schematic of USMP experimental device[74]
    Continuous modulation mode microwave source.(a) Schematic of continuous modulation mode; (b) schematic of experimental apparatus for observing TA effect and TAR effect induced by monopulse and multi-pulse microwave sources[90]
    Experimental diagram of unit ring scanning endoscopy imaging system and resolution[118]
    Structure diagram and physical diagram of ring array acquisition system[77]
    Multivariate data acquisition system. (a) MTAI system composed of concave array detectors; (b) flexible array detector[121]
    FP thermoacoustic detector. (a) Structure of FP thermoacoustic detector[122]; (b) lateral resolution of FP thermoacoustic detector[123]; (c) axial resolution of FP thermoacoustic detector[123]
    Image reconstruction process of thermoacoustic imaging
    Schematic of different imaging algorithms. (a) Schematic of BP algorithm; (b) schematic of HDCS-MTAI algorithm[124]; (c) schematic of 3D CS-MTAI algorithm[125]
    MTAI of mammary gland. (a) Schematic of a breast thermoacoustic scanner[26]; (b) thermoacoustic imaging of a series of coronal and sagittal sections of the female breast, arrows show a large lobulated enhanced mass[26]; (c) thermoacoustic imaging of the left breast and right breast of human[26]; (d) in vitro thermoacoustic imaging of tumor-bearing ewe breast[121]
    MTAI technique for brain imaging of rats in vivo[129]. (a) Thermoacoustic imaging system of rat brain structure; (b) thermoacoustic imaging results of rat brain structure
    MTAI technique for cerebral hemorrhage imaging[130]. (a) MTAI imaging system for GMH in mice; (b)-(e) thermoacoustic imaging of GMH in mice; (f)-(i) histological sections of mouse brain; (k)-(n) MTAI images after injection of 5 μL blood into the left ventricle; (j) indication of the location of blood injection; (o) histological images of Fig.12 (j); (p) TA signal curve along the dotted line shown in Fig.12 (l)
    MTAI system and microwave illumination methods[131]. (a) Schematic of the MTAI system; (b) pyramidal horn antenna; (c) parallel in-phase microwave illumination; (d) parallel anti-phase microwave illumination
    Thermoacoustic imaging of finger arthritis[116-117]
    Schematic of different thermoacoustic probes. (a) Schematic of anti-Gall-Fe3O4 nanoparticles to enhance MTAI in nude mouse model with pancreatic cancer[132]; (b) schematic of TA signal generation mechanism in BSA-GO nanoparticles[141]; (c) schematic of TA signal and shock wave generation mechanism in defect-rich TiN NPs[142]; (d) UHF-RF-acoustic contrast preparation and in vitro imaging[143]
    • Table 1. Microwave source types studied by each group

      View table

      Table 1. Microwave source types studied by each group

      Research groupMain frequencyPulsed widthProducing modePeak power
      D. Xing

      434 MHz74-77

      1.2 GHz66-68

      3 GHz

      6 GHz69-73

      10 ns

      0.5 μs

      0.5 μs

      0.5 μs

      HD

      MM

      MM

      MM

      4-40 MW

      300 kW

      70 kW

      350 kW

      H. Jiang

      1.2 GHz

      3 GHz50-52

      0.5 μs

      0.75 μs

      MM

      MM

      300 kW

      350 kW

      L. V. Wang

      3 GHz

      9 GHz

      9.4 GHz

      0.5 μs

      0.5 μs

      0.6-2.2 μs

      MM

      MM

      MM

      2 kW

      25/10 kW

      10 kW

      R. A. Kruger434 MHz0.5 μs/1 msHD25 kW
      V. Ntziachristos~100 MHz10 nsHD~70 MW
      H. Xin

      2.7-3.1 GHz55

      3/1.4/2.5 GHz56-60

      400 ns

      0.5-1.5 μs

      MC

      MM

      5.2 kW

      4/10 kW

      S. K. Patch108 MHz44-45700 nsMM20 kW
      A. Arbabian2/2.1 GHz61-72NAMC120 W

      Y. Zheng

      X. Wang

      2.7/2.9/3.1 GHz63-65

      915 MHz/2.45 GHz

      NA

      0.1-10 μs

      MC

      MC

      NA

      20 kW

    • Table 2. Thermoacoustic sensor types studied by each group

      View table

      Table 2. Thermoacoustic sensor types studied by each group

      Research groupeTypeShapeArray elementCenter frequencyResolution
      D. Xing

      Single-element68-71

      Multi-element83

      Multi-element77

      Multi-element80

      NA

      Linear

      Full ring

      Flexibility

      1

      128/64

      384/256

      64

      2.5/3.5 MHz

      2.5/2 MHz

      2.5/5 MHz

      7.5 MHz

      0.5 mm

      2.2 mm

      NA

      NA

      H. Jiang

      Single-element50-52

      Multi-element

      NA

      Linear

      1

      128

      2.25 MHz500 μm
      L. V. Wang

      Single-element

      Multi-element

      NA

      Linear

      1

      30

      1/3.5 MHz

      2.25 MHz

      1.5 mm

      1.9-2.5 mm

      R. A. KrugerMulti-elementNA641 MHz~1 mm
      V. NtziachristosSingle-elementNA17.5 MHz170 μm
      H. Xin

      Single-element55

      Multi-element56-60

      NA

      Linear

      1

      128

      1 MHz

      2.25 MHz

      500 μm

      mm order

      S. K. Patch

      Single-element44

      Multi-element45-46

      NA

      NA

      1

      96

      2.25 MHz

      1-4 MHz

      NA

      250 μm

      A. ArbabianSingle-element61-62NANA0.5 MHzNA
      Y. ZhengSingle-element63-65NA1NANA
    Tools

    Get Citation

    Copy Citation Text

    Shanxiang Zhang, Xiaoyu Tang, Huan Qin. Research Progress and Prospect of Microwave-Induced Thermoacoustic Imaging Technology[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Dec. 9, 2021

    Accepted: Dec. 31, 2021

    Published Online: Mar. 8, 2022

    The Author Email: Huan Qin (qinghuan@scnu.edu.cn)

    DOI:10.3788/LOP202259.0617004

    Topics