Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 411(2023)

Discovering High-Temperature Conventional Superconductors via Machine Learning

CUI Zhiqiang1、*, LUO Ying1, and ZHANG Yunwei1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(37)

    [1] [1] XIAO L, LIN L. Recent progress of power application of superconductor in China[J]. IEEE Transact Appl Supercond, 2017, 17(2): 2355-2360.

    [2] [2] KRABBES G, FUCHS G, CANDERS W R, et al. High temperature superconductor bulk materials: Fundamentals-Processing-Properties Control-Application Aspects[M]. Wiley-VCH, 2006,

    [3] [3] BALATSKY, ALEXANDER V, ILYA VEKHTER, et al. Impurity-induced states in conventional and unconventional superconductors[J]. Rev Modern Phys, 2006, 78(2): 373.

    [4] [4] LILIA B, HENNIG R, HIRSCHFELD P, et al. The 2021 room-temperature superconductivity roadmap[J]. J Phys: Condensed Matter, 2021, 34: 183002.

    [5] [5] COOPER Leon N. Bound electron pairs in a degenerate Fermi gas[J]. Phys Rev, 1956, 104(4): 1189.

    [6] [6] WANG Yanchao, LV Jian, ZHU Li, et al. CALYPSO: A method for crystal structure prediction[J]. Computer Phys Commun, 2012, 183(10): 2063-2070.

    [7] [7] GLASS C W, OGANOV A R, HANSEN N. USPEX-Evolutionary crystal structure prediction[J]. Computer Phys Commun, 2006, 175(11/12): 713-720.

    [8] [8] PICKARD C J, NEEDS R J. Ab initio random structure searching[J]. J Phys: Condensed Matter, 2011, 23(5): 053201.

    [9] [9] LI Y, HAO J, LIU H, et al. The metallization and superconductivity of dense hydrogen sulfide[J]. J Chem Phys, 140(17): 2014, 174712.

    [10] [10] DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system[J]. Nature, 2015, 525(7567): 73-76.

    [11] [11] MCMILLAN W L. Transition temperature of strong-coupled superconductors[J]. Phys Rev, 1968, 167(2): 3311.

    [12] [12] LIU H, NAUMOV I I, HOFFMANN R, et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure[J]. Proceedi Natl Academy Sci, 2017, 114(27): 6990-6995.

    [13] [13] PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity[J]. Phys Rev Lett, 2017, 119 (10): 107001.

    [14] [14] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures[J]. Nature, 2019, 569(7757): 528-531.

    [15] [15] Wang H, Li X, Gao G, et al. Hydrogen‐rich superconductors at high pressures[J]. Wiley Interdisciplinary Rev: Comput Molecular Sci, 2018, 8(1): e1330.

    [16] [16] SUN Y, LV J, XIE Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure[J]. Phys Rev Lett, 2019, 123(9): 097001.

    [17] [17] XIE H, YAO Y, FENG X, et al. Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor[J]. Phys Rev Lett, 2020, 125(21): 217001.

    [18] [18] MA L, ZHOU M, WANG Y, et al. Experimental clathrate superhydrides EuH6 and EuH9 at extreme pressure conditions[J]. Physl Rev Resh, 2021, 3(4): 043107.

    [21] [21] STANEV V. Machine learning modeling of superconducting critical temperature[J]. NPJ Comput Mater, 2018, 4: 1-14.

    [22] [22] MATSUMOTO K, HORIDE T. An acceleration search method of higher TC superconductors by a machine learning algorithm[J]. Appl Phys Express, 2019, 12: 073003.

    [23] [23] KONNO T, KUROKAWA H, NABESHIMA F, et al. Deep learning model for finding new superconductors[J]. Phys Rev B, 2021, 103: 014509.

    [24] [24] HUTCHEON M J, SHIPLEY A M, NEEDS R J. Predicting novel superconducting hydrides using machine learning approaches[J]. Phys Rev B, 2020, 101: 144505.

    [25] [25] BARHAM P, ISAACS R, MORTIER R, et al. Magpie: Online modelling and performance-aware systems[C]//9th Workshop on Hot Topics in Operating Systems (HotOS IX). 2003.

    [26] [26] XIE S, STEWART G, HAMLIN J, et al. Functional form of the superconducting critical temperature from machine learning[J]. Phys Rev B, 2019, 100: 174513.

    [27] [27] SHIPLEY A M, HUTCHEON M J, NEEDS R J, et al. High-throughput discovery of high-temperature conventional superconductors[J]. Phys Rev B, 2021, 104(5): 054501.

    [28] [28] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation[J]. APL Mater, 2013, 1: 011002.

    [29] [29] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. Arxiv, 2018. Doi: 10.18653/v1/N19-1423.

    [30] [30] MCMILLAN W. Transition temperature of strong-coupled superconductors[J]. Phys Rev, 1968, 167: 331.

    [31] [31] ALLEN P B, DYNES R.Transition temperature of strong-coupled superconductors reanalyzed[J]. Phys Rev B, 1975, 12: 905.

    [32] [32] BERTHELOT David, CARLINI Nicholas, GOODFELLOW Ian, et al. Mixmatch: A holistic approach to semi-supervised learning[J]. Arxiv, 2019. Doi: 10.48550/arXiv.1905.02249.

    [33] [33] EKIMOV E A, SIDOROV V A, BAUER E D, et al. Superconductivity in diamond[J]. Nature, 2004, 428: 542-545 (2004).

    [34] [34] YOKOYA T, NAKAMURA T, MATSUSHITA T, et al. Origin of the metallic properties of heavily boron-doped superconducting diamond[J]. Nature, 2005, 438: 647-650.

    [35] [35] LI Q, WANG H, TIAN Y, et al. Superhard and superconducting structures of BC5[J]. J Appl Phys, 2010, 108: 023507.

    [36] [36] TSUPPAYAKORN-AEK P, YANG X, PLUENGPHON P, et al. Route to high-TC superconductivity of BC7 via strong bonding of boron-carbon compound at high pressure[J]. Sci Rep, 2020, 10: 1-8.

    [37] [37] SAHA S, CATALDO S D, AMSLER M, et al. High-temperature conventional superconductivity in the boron-carbon system: Material trends[J]. Phys Rev B, 2020, 102: 024519.

    [38] [38] LI Q, ZHOU D, WAN H, et al. Crystal and electronic structures of superhard B2CN: An abinitio study[J]. Solid State Commun2012, 152, 71-75.

    Tools

    Get Citation

    Copy Citation Text

    CUI Zhiqiang, LUO Ying, ZHANG Yunwei. Discovering High-Temperature Conventional Superconductors via Machine Learning[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 411

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Nov. 27, 2022

    Accepted: --

    Published Online: Mar. 11, 2023

    The Author Email: CUI Zhiqiang (cuizhq3@mail2.sysu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20221022

    Topics