Microelectronics, Volume. 53, Issue 1, 70(2023)
A Low Power SRAM Architecture for Error-Tolerant Applications
[2] [2] TU M H, LIN J Y, TSAI M C, et al. Single-ended subthreshold SRAM with asymmetrical write/read-assist [J]. IEEE Trans Circ & Syst I: Regu Pap, 2010, 51(12): 3039-3047.
[3] [3] WEN L, ZHANG Y, ZENG X. Column-selection-enabled 10T SRAM utilizing shared diff-VDD write and dropped-VDD read for power reduction [J]. IEEE Trans VLSI Syst, 2019, 27(6): 1470-1474.
[4] [4] LV J, WANG Z, HUANG M, et al. A read-disturb-free and write-ability enhanced 9T SRAM with data-aware write operation [J]. Int J Elec, 2021, 109(2): 207-217.
[5] [5] SEEVINCK E, LIST F J, LOHSTROH J. Static-noise margin analysis of MOS SRAM cells [J]. IEEE J Sol Sta Circ, 1987, 22(5): 748-754.
[6] [6] QIU H, MIZUTANI T, SARAYA T, et al. Comparison and statistical analysis of four write stability metrics in bulk CMOS static random access memory cells [J]. Jpn J Appl Phys, 2015, 54(4s): 1-4.
[7] [7] PENG C P, XIAO S S, LU W J, et al. Average 7T1R nonvolatile SRAM with R/W margin enhanced for low-power application [J]. IEEE Trans VLSI Syst, 2018, 51(10): 584-588.
[8] [8] LIN S, KIM Y B, LOMBARDI F. Design and analysis of a 32 nm PVT tolerant CMOS SRAM cell for low leakage and high stability [J]. IEEE Trans VLSI Syst, 2010, 43(2): 176-187.
[9] [9] LU W J, PENG C Y, TAO Y W, et al. Efficient replica bitline technique for variation-tolerant timing generation scheme of SRAM sense amplifiers [J]. Elec Lett, 2015, 51(10): 742-743.
[10] [10] HE Y, ZHANG J, WU X, et al. A half-select disturb free 11T SRAM cell with built-in write/read-assist scheme for ultra-low voltage operations [J]. IEEE Trans VLSI Syst, 2019, 27(10): 2344-2353.
Get Citation
Copy Citation Text
HUANG Maohang, WANG Zilin, HE Yajuan. A Low Power SRAM Architecture for Error-Tolerant Applications[J]. Microelectronics, 2023, 53(1): 70
Category:
Received: Jan. 27, 2022
Accepted: --
Published Online: Dec. 15, 2023
The Author Email: