Infrared and Laser Engineering, Volume. 51, Issue 3, 20220106(2022)
Research progress of high performance Sb-based superlattice mid-wave infrared photodetector (Invited)
[1] Cai Y. Review and prospect of HgCdTe detectors[J]. Infrared and Laser Engineering, 51, 20210988(2022).
[2] Si J. Novel InSb-based infrared detector materials[J]. Infrared and Laser Engineering, 51, 20210811(2022).
[3] Lv Y, Lu X, Lu Z X. Review of Antimonide infrared detector development at home and abroad[J]. Aero Weaponry, 27, l-12(2020).
[4] [4] Bürkle L, Fuchs F. InAs(GaIn)Sb superlattices: A promising material system f infrared detection[D].UK: Elsevier Science, 2002.
[5] Aytac Y, Olson B V, Kim J K, et al. Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infrared InAs/InAsSb superlattices[J]. Applied Physics Letters, 105, 022107(2014).
[6] Steenbergen E H, Connelly B C, Metcalfe G D, et al. Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb[J]. Applied Physics Letters, 99, 25110(2011).
[7] Olson B V, Shaner E A, Kim J K, et al. Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice[J]. Applied Physics Letters, 101, 092109(2012).
[8] Lin Z Y, Liu S, Steenbergen E H, et al. Influence of carrier localization on minority carrier lifetime in InAs/InAsSb type-II superlattices[J]. Applied Physics Letters, 107, 201107(2015).
[9] Alshahrani D, Kesaria M, Anyebe E, . et al. Emerging type-II superlattices of InAs/InAsSb and InAs/GaSb for mid-wavelength infrared photodetectors[J]. Advanced Photonics Research, 3, 2100094(2021).
[10] Ting D Z, Rafol S B, Khoshakhlagh A, et al. InAs/InAsSb type-II strained-layer superlattice infrared photodetectors[J]. Micromachines, 11, 958(2020).
[11] [11] Ting D Z, Khoshakhlagh A, Soibel A, et al. Barrier infrared detect: US, US8217480B2[P].20211007.
[12] Shen X M, Li H, Liu S, et al. Study of InAs/InAsSb type-II superlattices using high-resolution x-ray diffraction and cross-sectional electron microscopy[J]. Journal of Crystal Growth, 381, 1-5(2013).
[13] Lu J, Luna E, Aoki T, et al. Evaluation of antimony segregation in InAs/InAs1− xSbx type-II superlattices grown by molecular beam epitaxy[J]. Journal of Applied Physics, 119, 095702(2016).
[14] Jiang J K, Li Y, Chang F R, et al. MBE growth of mid-wavelength infrared photodetectors based on high quality InAs/AlAs/InAsSb superlattice[J]. Journal of Crystal Growth, 564, 126109(2021).
[15] Schowalter M, Rosenauer A, Gerthsen D, et al. Investigation of in segregation in InAs/AlAs quantum-well structures[J]. Applied Physics Letters, 79, 4426-4428(2001).
[16] Soibel A, Hill C J, Keo S A, et al. Room temperature performance of mid-wavelength infrared nBn detectors[J]. Applied Physics Letters, 105, 023512(2014).
[17] She L F, Jiang J K, Chen W Q, et al. Mid-wave infrared p+-B-n InAs/InAsSb type-II superlattice photodetector with an AlAsSb/InAsSb superlattice barrier[J]. Infrared Physics and Technology, 121, 104015(2022).
[18] Tong J C, Tobing L, Qiu S P, et al. Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector[J]. Applied Physics Letters, 113, 011110(2018).
[19] [19] Peters D W, Reinke C M, Davids P S, et al. Nanoantennaenabled wave infrared focal plane arrays[C]Proceeding of SPIE, 2012, 8353: 83533.
[20] [20] Nolde J A, Jackson E M, Kim M, et al. Enhancement of quantum efficiency in nBn detects with thin absbers using plasmonic gratings[C]Proceeding of SPIE, 2019, 10926: 1092627.
[21] [21] Peters D W, Davids P S, Kim J K, et al. Plasmonic nanoantennas f enhanced wave longwave infrared imaging[C]Proceeding of SPIE, 2012, 9467: 946729.
[22] [22] D’Souza A I, Ionescu A C, Salcido M, et al. InAsSb detects f visible to MWIR high operating temperature applications[C]Proceeding of SPIE, 2011, 8012: 80122.
[23] Hao H Y, Wang G W, Han X, et al. Extended-wavelength InGaAsSb infrared unipolar barrier detectors[J]. AIP Advances, 8, 095106(2018).
[24] Guo C Y, Sun Y Y, Jia Q, et al. Visible-extended mid-infrared wide spectrum detector based on InAs/GaSb type-Ⅱ superlattices[J]. Infrared Physics and Technology, 89, 147-153(2018).
[25] Guo C Y, Sun Y Y, Jia Q, et al. Wide spectrum responsivity detectors from visible to mid-infrared based on antimonide[J]. Infrared Physics and Technology, 96, 1-6(2019).
Get Citation
Copy Citation Text
Hongyue Hao, Donghai Wu, Yingqiang Xu, Guowei Wang, Dongwei Jiang, Zhichuan Niu. Research progress of high performance Sb-based superlattice mid-wave infrared photodetector (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220106
Category: Special issue-Mid-infrared integrated optoelectronic technology
Received: Dec. 25, 2021
Accepted: Mar. 4, 2022
Published Online: Apr. 8, 2022
The Author Email: Donghai Wu (dhwu@semi.ac.cn)