Journal of Synthetic Crystals, Volume. 51, Issue 6, 1122(2022)

Crystalline Silicon Cells Technology Based on POLO Passivation Contact Structure and Its Research Progress

ZHANG Tianjie1、*, QU Xiaoyong1, GUO Yonggang1, WU Xiang1, GAO Jiaqing1, ZHANG Bo1, YANG Aijing1, LIU Junbao1, LI Yueheng1, and LIN Tao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(61)

    [1] [1] IRENA. Global energy transformation: A roadmap to 2050 (2019 edition)[DB/OL]. 2019. https: //www.irena.org/publications.

    [2] [2] BLAKERS A. Development of the PERC solar cell[J]. IEEE Journal of Photovoltaics, 2019, 9(3): 629-635.

    [3] [3] CUEVAS A, LUQUE A, EGUREN J, et al. High efficiency bifacial back surface field solar cells[J]. Solar Cells, 1981, 3(4): 337-340.

    [4] [4] HBNER A, ABERLE A G, HEZEL R. Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency[J]. Applied Physics Letters, 1997, 70(8): 1008-1010.

    [5] [5] YOSHIKAWA K, KAWASAKI H, YOSHIDA W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature Energy, 2017, 2: 17032.

    [6] [6] SCHMIDT J, PEIBST R, BRENDEL R. Surface passivation of crystalline silicon solar cells: present and future[J]. Solar Energy Materials and Solar Cells, 2018, 187: 39-54.

    [7] [7] RICHTER A, HERMLE M, GLUNZ S W. Reassessment of the limiting efficiency for crystalline silicon solar cells[J]. IEEE Journal of Photovoltaics, 2013, 3(4): 1184-1191.

    [8] [8] RICHTER A, BENICK J, FELDMANN F, et al. n-type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation[J]. Solar Energy Materials and Solar Cells, 2017, 173: 96-105.

    [9] [9] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (Version 58)[J]. Progress in Photovoltaics: Research and Applications, 2021, 29(7): 657-667.

    [10] [10] HAASE F, HOLLEMANN C, SCHFER S, et al. Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 186: 184-193.

    [11] [11] RICHTER A, MüLLER R, BENICK J, et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses[J]. Nature Energy, 2021, 6(4): 429-438.

    [12] [12] CHEN D M, CHEN Y F, WANG Z G, et al. 24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110258.

    [13] [13] PV-magazine. JinkoSolar sets new record for n-type solar cell efficiency. JinkoSolar sets new record for n-type solar cell efficiency-pv magazine International (pv-magazine.com), 2021.

    [15] [15] BAYERL P, FOLCHERT N, BAYER J, et al. Contacting a single nanometer-sized pinhole in the interfacial oxide of a poly-silicon on oxide (POLO) solar cell junction[J]. Progress in Photovoltaics: Research and Applications, 2021, 29(8): 936-942.

    [16] [16] GAN J Y, SWANSON R M. Polysilicon emitters for silicon concentrator solar cells[C]//IEEE Conference on Photovoltaic Specialists. May 21-25, 1990, Kissimmee, FL, USA. IEEE, 1990: 245-250.

    [17] [17] AJURIA S A, REIF R. Early stage evolution kinetics of the polysilicon/single-crystal silicon interfacial oxide upon annealing[J]. Journal of Applied Physics, 1991, 69(2): 662-667.

    [18] [18] STUCKELBERGER J, YAN D, PHENG PHANG S, et al. Impact of pre-annealing on industrially LPCVD deposited poly Si hole-selective contacts[C].Asia Pacific Solar research conference, 2020.

    [19] [19] KALE A S, NEMETH W, GUTHREY H, et al. Understanding the charge transport mechanisms through ultrathin SiOx layers in passivated contacts for high-efficiency silicon solar cells[J]. Applied Physics Letters, 2019, 114(8): 083902.

    [20] [20] GUTHREY H, LIMA SALLES C, KALE A S, et al. Effect of surface texture on pinhole formation in SiOx-based passivated contacts for high-performance silicon solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 55737-55745.

    [21] [21] FOLCHERT N, RIENCKER M, YEO A A, et al. Temperature-dependent contact resistance of carrier selective poly-Si on oxide junctions[J]. Solar Energy Materials and Solar Cells, 2018, 185: 425-430.

    [22] [22] GALLENI L, FRAT M, RADHAKRISHNAN H S, et al. Mechanisms of charge carrier transport in polycrystalline silicon passivating contacts[J]. Solar Energy Materials and Solar Cells, 2021, 232: 111359.

    [23] [23] PEIBST R, RMER U, LARIONOVA Y, et al. Working principle of carrier selective poly-Si/c-Si junctions: is tunnelling the whole story? [J]. Solar Energy Materials and Solar Cells, 2016, 158: 60-67.

    [24] [24] CUEVAS A, MACDONALD D. Measuring and interpreting the lifetime of silicon wafers[J]. Solar Energy, 2004, 76(1/2/3): 255-262.

    [25] [25] BRENDEL R, RIENAECKER M, PEIBST R. A quantitative measure for the carrier selectivity of contacts to solar cells[C]. in Proceedings 32nd European Photovoltaic Solar Energy Conference and Exhibition, 2016, 447-451.

    [26] [26] ALLEN T G, BULLOCK J, YANG X, et al. Passivating contacts for crystalline silicon solar cells[J]. Nature Energy, 2019, 4(11): 914-928.

    [27] [27] YAN D, CUEVAS A, BULLOCK J, et al. Phosphorus-diffused polysilicon contacts for solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 142: 75-82.

    [28] [28] YAN D, CUEVAS A, WAN Y M, et al. Silicon nitride/silicon oxide interlayers for solar cell passivating contacts based on PECVD amorphous silicon[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2015, 9(11): 617-621.

    [29] [29] BILAL B, NAJEEB-UD-DIN H. Fundamentals of and recent advances in carrier selective passivating contacts for silicon solar cells[J]. Journal of Electronic Materials, 2021, 50(7): 3761-3772.

    [30] [30] KOBAYASHI ASUHA H, MAIDA O, TAKAHASHI M, et al. Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density[J]. Journal of Applied Physics, 2003, 94(11): 7328-7335.

    [31] [31] TONG H, LIAO M D, ZHANG Z, et al. A strong-oxidizing mixed acid derived high-quality silicon oxide tunneling layer for polysilicon passivated contact silicon solar cell[J]. Solar Energy Materials and Solar Cells, 2018, 188: 149-155.

    [32] [32] MOLDOVAN A, FELDMANN F, ZIMMER M, et al. Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO2 layers[J]. Solar Energy Materials and Solar Cells, 2015, 142: 123-127.

    [33] [33] SACHS E, PRUEGER G, GUERRIERI R. An equipment model for polysilicon LPCVD[J]. IEEE Transactions on Semiconductor Manufacturing, 1992, 5(1): 3-13.

    [34] [34] NANDAKUMAR N, RODRIGUEZ J, KLUGE T, et al. Approaching 23% with large-area monoPoly cells using screen-printed and fired rear passivating contacts fabricated by inline PECVD[J]. Progress in Photovoltaics: Research and Applications, 2019, 27(2): 107-112.

    [35] [35] MOUSUMI J F, ALI H, GREGORY G, et al. Phosphorus-doped polysilicon passivating contacts deposited by atmospheric pressure chemical vapor deposition[J]. Journal of Physics D: Applied Physics, 2021, 54(38): 384003.

    [36] [36] LI S H, POMASKA M, HO J, et al. In situ-doped silicon thin films for passivating contacts by hot-wire chemical vapor deposition with a high deposition rate of 42 nm/min[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30493-30499.

    [37] [37] YAN D, CUEVAS A, PHANG S P, et al. 23% efficient p-type crystalline silicon solar cells with hole-selective passivating contacts based on physical vapor deposition of doped silicon films[J]. Applied Physics Letters, 2018, 113(6): 061603.

    [38] [38] LOSSEN J, HO J, EISERT S, et al. Electron beam evaporation of silicon for polysilicon/SiO2 passivated contacts[C]. In 35th European Photovoltaic Solar Energy Conference and Exhibition, 2018, 418-421.

    [39] [39] DAVID L, HüBNER S, MIN B, et al. Fired-only passivating poly-Si on oxide contacts with DC-sputtered in-situ phosphorous-doped silicon layers[C]. 37th European Photovoltaic Solar Energy Conference and Exhibition, 2020.

    [40] [40] VAN DE LOO B W H, MACCO B, SCHNABEL M, et al. On the hydrogenation of poly-Si passivating contacts by Al2O3 and SiNx thin films[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110592.

    [41] [41] IFTPNAR H E, STODOLNY M K, WU Y, et al. Study of screen printed metallization for polysilicon based passivating contacts[J]. Energy Procedia, 2017, 124: 851-861.

    [44] [44] REITER S, KOPER N, REINEKE-KOCH R, et al. Parasitic absorption in polycrystalline Si-layers for carrier-selective front junctions[J]. Energy Procedia, 2016, 92: 199-204.

    [45] [45] PADHAMNATH P, KHANNA A, NANDAKUMAR N, et al. Development of thin polysilicon layers for application in monoPolyTM cells with screen-printed and fired metallization[J]. Solar Energy Materials and Solar Cells, 2020, 207: 110358.

    [46] [46] FELDMANN F, NICOLAI M, MüLLER R, et al. Optical and electrical characterization of poly-Si/SiOx contacts and their implications on solar cell design[J]. Energy Procedia, 2017, 124: 31-37.

    [47] [47] INGENITO A, LIMODIO G, PROCEL P, et al. Silicon solar cell architecture with front selective and rear full area ion-implanted passivating contacts[J]. Solar RRL, 2017, 1(7): 1700040.

    [48] [48] XU G C, DENG M Z, CHEN S, et al. 25% cell efficiency with integration of passivating contact technology and interdigitated back contact structure on 6"wafers[C]//2019 IEEE 46th Photovoltaic Specialists Conference. June 16-21, 2019, Chicago, IL, USA. IEEE, 2019: 1452-1455.

    [49] [49] MIHAILETCHI V D, CHU H F, LOSSEN J, et al. Surface passivation of boron-diffused junctions by a borosilicate glass and in situ grown silicon dioxide interface layer[J]. IEEE Journal of Photovoltaics, 2018, 8(2): 435-440.

    [50] [50] JAIN A, CHOI W J, HUANG Y Y, et al. Design, optimization, and in-depth understanding of front and rear junction double-side passivated contacts solar cells[C]//IEEE Journal of Photovoltaics. IEEE,: 1141-1148.

    [51] [51] LI Y P, YE F, LIU Y Q, et al. Research of annealing and boron doping on SiOx/p-poly-Si hole-selective passivated contact[J]. IEEE Journal of Photovoltaics, 2020, 10(6): 1552-1556.

    [52] [52] GREEN M. Silicon solar cells: advanced principles and practice[M]. Sydney: Centre for Photovoltaic Devices and Systems, 1995

    [53] [53] YAN D, CUEVAS A, MICHEL J I, et al. Polysilicon passivated junctions: the next technology for silicon solar cells? [J]. Joule, 2021, 5(4): 811-828.

    [54] [54] KRUSE C N, SCHFER S, HAASE F, et al. Simulation-based roadmap for the integration of poly-silicon on oxide contacts into screen-printed crystalline silicon solar cells[J]. Scientific Reports, 2021, 11: 996.

    [55] [55] ENGELHARDT J, FREY A, FRITZ S, et al. Contact formation on boron doped silicon substrates from passivating PECV-deposited dielectric doping layers with anti-reflective properties by screen-printing Ag pastes for high-efficiency n-type silicon solar cells[C]. 31 st European Photovoltaic Solar Energy Conference and Exhibition, 2015, 351-354.

    [56] [56] LOHMLLER (NE WERNER) S, LOHMüLLER E. Advanced BBr3 diffusion with second deposition step for selective emitter formation by laser doping[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2018, 12(7): 1700442.

    [57] [57] DULLWEBER T, STHR M, KRUSE C, et al. Evolutionary PERC+ solar cell efficiency projection towards 24% evaluating shadow-mask-deposited poly-Si fingers below the Ag front contact as next improvement step[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110586.

    [58] [58] MACK S, HERRMANN D, LENES M, et al. Progress in p-type tunnel oxide-passivated contact solar cells with screen-printed contacts[J]. Solar RRL, 2021, 5(5): 2100152.

    [59] [59] YU B, SHI J C, LI F, et al. Selective tunnel oxide passivated contact on the emitter of large-size n-type TOPCon bifacial solar cells[J]. Journal of Alloys and Compounds, 2021, 870: 159679.

    [60] [60] NOGAY G, STUCKELBERGER J, WYSS P, et al. Interplay of annealing temperature and doping in hole selective rear contacts based on silicon-rich silicon-carbide thin films[J]. Solar Energy Materials and Solar Cells, 2017, 173: 18-24.

    [61] [61] KHLER M, POMASKA M, LENTZ F, et al. Wet-chemical preparation of silicon tunnel oxides for transparent passivated contacts in crystalline silicon solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14259-14263.

    [62] [62] LARIONOVA Y, SCHULTE-HUXEL H, MIN B, et al. Screen printed double-side contacted POLO-cells with ultra-thin poly-Si layers and different transparent conductive oxides[C].36th European Photovoltaic Solar Energy Conference and Exhibition, 2019, 172-175.

    [63] [63] WANG Q Q, WU W P, CHEN D M, et al. Study on the cleaning process of n+-poly-Si wraparound removal of TOPCon solar cells[J]. Solar Energy, 2020, 211: 324-335.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Tianjie, QU Xiaoyong, GUO Yonggang, WU Xiang, GAO Jiaqing, ZHANG Bo, YANG Aijing, LIU Junbao, LI Yueheng, LIN Tao. Crystalline Silicon Cells Technology Based on POLO Passivation Contact Structure and Its Research Progress[J]. Journal of Synthetic Crystals, 2022, 51(6): 1122

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 7, 2022

    Accepted: --

    Published Online: Aug. 13, 2022

    The Author Email: Tianjie ZHANG (18292041718@163.com)

    DOI:

    CSTR:32186.14.

    Topics