Chinese Journal of Lasers, Volume. 50, Issue 17, 1714009(2023)
Analysis of Current Status and Development Trends of Terahertz Radiation Sources Based on Strong Laser Pulses
[1] Ulbricht R, Hendry E, Shan J E et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy[J]. Reviews of Modern Physics, 83, 543-586(2011).
[2] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging: modern techniques and applications[J]. Laser & Photonics Reviews, 5, 124-166(2011).
[3] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science[J]. Nature Photonics, 11, 16-18(2017).
[4] Koenig S, Lopez-Diaz D, Antes J et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 7, 977-981(2013).
[5] Jiang X L, Xu Y. Non-destructive detection of corrosion thickness of steel plate under covering layer by terahertz time domain spectroscopy[J]. Acta Optica Sinica, 42, 1312001(2022).
[6] Li L, Ge H Y, Jiang Y Y et al. Research progress of terahertz wave in 6G communication network[J]. Laser & Optoelectronics Progress, 59, 1300007(2022).
[7] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 32, 143-171(2011).
[8] Choi W J, Cheng G, Huang Z Y et al. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators[J]. Nature Materials, 18, 820-826(2019).
[9] Bergé L, Kaltenecker K, Engelbrecht S et al. Terahertz spectroscopy from air plasmas created by two-color femtosecond laser pulses: the ALTESSE project[J]. EPL (Europhysics Letters), 126, 24001(2019).
[10] Basov D N, Averitt R D, van der Marel D et al. Electrodynamics of correlated electron materials[J]. Reviews of Modern Physics, 83, 471-541(2011).
[11] Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nature Photonics, 7, 680-690(2013).
[12] Vicario C, Ruchert C, Ardana-Lamas F et al. Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient[J]. Nature Photonics, 7, 720-723(2013).
[13] Zhao L R, Wang Z, Tang H et al. Terahertz oscilloscope for recording time information of ultrashort electron beams[J]. Physical Review Letters, 122, 144801(2019).
[14] Hibberd M T, Healy A L, Lake D S et al. Acceleration of relativistic beams using laser-generated terahertz pulses[J]. Nature Photonics, 14, 755-759(2020).
[15] Hafez H A, Chai X, Ibrahim A et al. Intense terahertz radiation and their applications[J]. Journal of Optics, 18, 093004(2016).
[16] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).
[17] Maestrini A, Ward J S, Gill J J et al. A 540-640-GHz high-efficiency four-anode frequency tripler[J]. IEEE Transactions on Microwave Theory and Techniques, 53, 2835-2843(2005).
[18] Crowe T W, Mattauch R J, Roser H P et al. GaAs Schottky diodes for THz mixing applications[J]. Proceedings of the IEEE, 80, 1827-1841(1992).
[19] Köhler R, Tredicucci A, Beltram F et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 417, 156-159(2002).
[20] Faist J, Capasso F, Sivco D L et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).
[21] Kazarinov R F, Suris R A. Possible amplification of electromagnetic waves in a semiconductor with a superlattice[J]. Soviet Physycs Semiconductors, 5, 707-709(1971).
[22] Zhao F Y, Li Y Y, Liu J Q et al. Sampled grating terahertz quantum cascade lasers[J]. Applied Physics Letters, 114, 141105(2019).
[23] Walther C, Fischer M, Scalari G et al. Quantum cascade lasers operating from 1.2 to 1.6 THz[J]. Applied Physics Letters, 91, 131122(2007).
[24] Bachmann D, Rösch M, Süess M J et al. Short pulse generation and mode control of broadband terahertz quantum cascade lasers[J]. Optica, 3, 1087-1094(2016).
[25] Wynne K, Carey J J. An integrated description of terahertz generation through optical rectification, charge transfer, and current surge[J]. Optics Communications, 256, 400-413(2005).
[26] Boyd R W[M]. Nonlinear optics(2020).
[27] Vodopyanov K L. Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format[J]. Optics Express, 14, 2263-2276(2006).
[28] Hoffmann M C, Fülöp J A. Intense ultrashort terahertz pulses: generation and applications[J]. Journal of Physics D: Applied Physics, 44, 083001(2011).
[29] Hebling J, Almasi G, Kozma I et al. Velocity matching by pulse front tilting for large area THz-pulse generation[J]. Optics Express, 10, 1161-1166(2002).
[30] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting hertzian dipoles[J]. Applied Physics Letters, 45, 284-286(1984).
[31] You D, Dykaar D R, Jones R R et al. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses[J]. Optics Letters, 18, 290-292(1993).
[32] Jones R R, You D, Bucksbaum P H. Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses[J]. Physical Review Letters, 70, 1236-1239(1993).
[33] Ropagnol X, Khorasaninejad M, Raeiszadeh M et al. Intense THz pulses with large ponderomotive potential generated from large aperture photoconductive antennas[J]. Optics Express, 24, 11299-11311(2016).
[34] Gu J Q, Wang K M, Xu Y et al. Metamaterials-based terahertz photoconductive antennas[J]. Chinese Journal of Lasers, 48, 1914004(2021).
[35] Seifert T, Jaiswal S, Martens U et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J]. Nature Photonics, 10, 483-488(2016).
[36] Hibberd M T, Lake D S, Johansson N A B et al. Magnetic-field tailoring of the terahertz polarization emitted from a spintronic source[J]. Applied Physics Letters, 114, 031101(2019).
[37] Chen X H, Wu X J, Shan S Y et al. Generation and manipulation of chiral broadband terahertz waves from cascade spintronic terahertz emitters[J]. Applied Physics Letters, 115, 221104(2019).
[38] Sengupta K, Nagatsuma T, Mittleman D M. Terahertz integrated electronic and hybrid electronic-photonic systems[J]. Nature Electronics, 1, 622-635(2018).
[39] Petrov A Y. Non-reciprocal modulation via acousto-optics[J]. Nature Photonics, 12, 570-571(2018).
[40] Pálfalvi L, Ollmann Z, Tokodi L et al. Hybrid tilted-pulse-front excitation scheme for efficient generation of high-energy terahertz pulses[J]. Optics Express, 24, 8156-8169(2016).
[41] Nugraha P S, Krizsán G, Lombosi C et al. Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source[J]. Optics Letters, 44, 1023-1026(2019).
[42] Pálfalvi L, Tóth G, Tokodi L et al. Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation[J]. Optics Express, 25, 29560-29573(2017).
[43] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995).
[44] Bergé L, Skupin S, Nuter R et al. Ultrashort filaments of light in weakly ionized, optically transparent media[J]. Reports on Progress in Physics, 70, 1633-1713(2007).
[45] Bergé L, Skupin S, Köhler C et al. 3D numerical simulations of THz generation by two-color laser filaments[J]. Physical Review Letters, 110, 073901(2013).
[46] D’Amico C, Houard A, Franco M et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air[J]. Physical Review Letters, 98, 235002(2007).
[47] Daigle J F, Théberge F, Henriksson M et al. Remote THz generation from two-color filamentation: long distance dependence[J]. Optics Express, 20, 6825-6834(2012).
[48] Clerici M, Peccianti M, Schmidt B E et al. Wavelength scaling of terahertz generation by gas ionization[J]. Physical Review Letters, 110, 253901(2013).
[49] Wang T J, Yuan S A, Chen Y P et al. Toward remote high energy terahertz generation[J]. Applied Physics Letters, 97, 111108(2010).
[50] de Alaiza Martínez P G, Babushkin I, Bergé L et al. Boosting terahertz generation in laser-field ionized gases using a sawtooth wave shape[J]. Physical Review Letters, 114, 183901(2015).
[51] Löffler T, Jacob F, Roskos H G. Generation of terahertz pulses by photoionization of electrically biased air[J]. Applied Physics Letters, 77, 453-455(2000).
[52] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air[J]. Optics Letters, 25, 1210-1212(2000).
[53] Kress M, Löffler T, Eden S et al. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves[J]. Optics Letters, 29, 1120-1122(2004).
[54] Kim K Y, Taylor A J, Glownia J H et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nature Photonics, 2, 605-609(2008).
[55] Kim K Y, Glownia J H, Taylor A J et al. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields[J]. Optics Express, 15, 4577-4584(2007).
[56] Roskos H G, Thomson M D, Kreß M et al. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications[J]. Laser & Photonics Review, 1, 349-368(2007).
[57] Babushkin I, Skupin S, Husakou A et al. Tailoring terahertz radiation by controlling tunnel photoionization events in gases[J]. New Journal of Physics, 13, 123029(2011).
[58] Keldysh L. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JETP, 20, 1307-1314(1965).
[59] Perelomov A, Popov V S, Terentev M. Ionization of atoms in an alternating electric field[J]. Soviet Physics JETP, 23, 924-934(1966).
[60] Nguyen A, González de Alaiza Martínez P, Déchard J et al. Spectral dynamics of THz pulses generated by two-color laser filaments in air: the role of Kerr nonlinearities and pump wavelength[J]. Optics Express, 25, 4720-4740(2017).
[61] Babushkin I, Kuehn W, Köhler C et al. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases[J]. Physical Review Letters, 105, 053903(2010).
[62] Debayle A, Gremillet L, Bergé L et al. Analytical model for THz emissions induced by laser-gas interaction[J]. Optics Express, 22, 13691-13709(2014).
[63] Amico C D, Houard A, Akturk S et al. Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment[J]. New Journal of Physics, 10, 013015(2008).
[64] Sprangle P, Peñano J R, Hafizi B et al. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces[J]. Physical Review E, 69, 066415(2004).
[65] Thiele I, Nuter R, Bousquet B et al. Theory of terahertz emission from femtosecond-laser-induced microplasmas[J]. Physical Review E, 94, 063202(2016).
[66] Davoine X, Debayle A et al. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: competition between photoionization and Wakefield effects[J]. Scientific Reports, 6, 26743(2016).
[67] Thiele I, Zhou B, Nguyen A et al. Terahertz emission from laser-driven gas plasmas: a plasmonic point of view[J]. Optica, 5, 1617-1622(2018).
[68] Hamster H, Sullivan A, Gordon S et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. Physical Review Letters, 71, 2725-2728(1993).
[69] Liao G Q, Li Y T, Liu H et al. Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 3994-3999(2019).
[70] Liao G Q, Li Y T, Li C et al. Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses[J]. Physical Review Letters, 114, 255001(2015).
[71] Gopal A, Herzer S, Schmidt A et al. Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator[J]. Physical Review Letters, 111, 074802(2013).
[72] Li C, Liao G Q, Zhou M L et al. Backward terahertz radiation from intense laser-solid interactions[J]. Optics Express, 24, 4010-4021(2016).
[73] Leemans W P, Geddes C G R, Faure J et al. Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary[J]. Physical Review Letters, 91, 074802(2003).
[74] Liao G Q, Li Y T, Zhang Y H et al. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions[J]. Physical Review Letters, 116, 205003(2016).
[75] Déchard J, Debayle A, Davoine X et al. Terahertz pulse generation in underdense relativistic plasmas: from photoionization-induced radiation to coherent transition radiation[J]. Physical Review Letters, 120, 144801(2018).
[76] Freidberg J P, Mitchell R W, Morse R L et al. Resonant absorption of laser light by plasma targets[J]. Physical Review Letters, 28, 795-799(1972).
[77] Kuratov A S, Brantov A V, Aliev Y M et al. Terahertz radiation in laser-induced charge separation in the irradiated plasma target[J]. Quantum Electronics, 46, 1023-1030(2016).
[78] Herzer S, Woldegeorgis A, Polz J et al. An investigation on THz yield from laser-produced solid density plasmas at relativistic laser intensities[J]. New Journal of Physics, 20, 063019(2018).
[79] Garibian G. Contribution to the theory of transition radiation[J]. Soviet Physics JETP, 6, 1079(1958).
[80] Wu Z R, Fisher A S, Goodfellow J et al. Intense terahertz pulses from SLAC electron beams using coherent transition radiation[J]. Review of Scientific Instruments, 84, 022701(2013).
[81] Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction[J]. Reviews of Modern Physics, 85, 751-793(2013).
[82] Mora P. Plasma expansion into a vacuum[J]. Physical Review Letters, 90, 185002(2003).
[83] Kahaly S, Yadav S K, Wang W M et al. Near-complete absorption of intense, ultrashort laser light by sub-λ gratings[J]. Physical Review Letters, 101, 145001(2008).
[84] Kulcsár G, Al Mawlawi D, Budnik F W et al. Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets[J]. Physical Review Letters, 84, 5149-5152(2000).
[85] Fedeli L, Sgattoni A, Cantono G et al. Relativistic surface plasmon enhanced harmonic generation from gratings[J]. Applied Physics Letters, 110, 051103(2017).
[86] Ceccotti T, Floquet V, Sgattoni A et al. Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets[J]. Physical Review Letters, 111, 185001(2013).
[87] Smith S J, Purcell E M. Visible light from localized surface charges moving across a grating[J]. Physical Review, 92, 1069(1953).
[88] Kodama R, Sentoku Y, Chen Z L et al. Plasma devices to guide and collimate a high density of MeV electrons[J]. Nature, 432, 1005-1008(2004).
[89] Wang K L, Mittleman D M. Metal wires for terahertz wave guiding[J]. Nature, 432, 376-379(2004).
[90] Yang K H, Richards P L, Shen Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3[J]. Applied Physics Letters, 19, 320-323(1971).
[91] Auston D H, Cheung K P, Valdmanis J A et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media[J]. Physical Review Letters, 53, 1555-1558(1984).
[92] Blanchard F, Razzari L, Bandulet H C et al. Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal[J]. Optics Express, 15, 13212-13220(2007).
[93] Löffler T, Hahn T, Thomson M et al. Large-area electro-optic ZnTe terahertz emitters[J]. Optics Express, 13, 5353-5362(2005).
[94] Jang D, Sung J H, Lee S K et al. Generation of 0.7 mJ multicycle 15 THz radiation by phase-matched optical rectification in lithium niobate[J]. Optics Letters, 45, 3617-3620(2020).
[95] Wu X J, Ren Z J, Kong D Y et al. Lithium niobate strong-field terahertz source and its applications[J]. Chinese Journal of Lasers, 49, 1914001(2022).
[96] Hebling J, Stepanov A G, Almási G et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts[J]. Applied Physics B, 78, 593-599(2004).
[97] Blanchard F, Ropagnol X, Hafez H et al. Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimillijoule pump energies[J]. Optics Letters, 39, 4333-4336(2014).
[98] Huang S W, Granados E, Huang W R et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate[J]. Optics Letters, 38, 796-798(2013).
[99] Zhang X C, Ma X F, Jin Y et al. Terahertz optical rectification from a nonlinear organic crystal[J]. Applied Physics Letters, 61, 3080-3082(1992).
[100] Hauri C P, Ruchert C, Vicario C et al. Strong-field single-cycle THz pulses generated in an organic crystal[J]. Applied Physics Letters, 99, 161116(2011).
[101] Vicario C, Ovchinnikov A V, Ashitkov S I et al. Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser[J]. Optics Letters, 39, 6632-6635(2014).
[102] Wu X J, Carbajo S, Ravi K et al. Terahertz generation in lithium niobate driven by Ti∶sapphire laser pulses and its limitations[J]. Optics Letters, 39, 5403-5406(2014).
[103] Shen Y C, Upadhya P C, Linfield E H et al. Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters[J]. Applied Physics Letters, 83, 3117-3119(2003).
[104] Hale P J, Madeo J, Chin C et al. 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas[J]. Optics Express, 22, 26358-26364(2014).
[105] Yardimci N T, Yang S H, Berry C W et al. High-power terahertz generation using large-area plasmonic photoconductive emitters[J]. IEEE Transactions on Terahertz Science and Technology, 5, 223-229(2015).
[106] Andreeva V A, Kosareva O G, Panov N A et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma[J]. Physical Review Letters, 116, 063902(2016).
[107] Yu Fedorov V, Koulouklidis A D, Tzortzakis S. THz generation by two-color femtosecond filaments with complex polarization states: four-wave mixing versus photocurrent contributions[J]. Plasma Physics and Controlled Fusion, 59, 014025(2017).
[108] Lu C H, He T, Zhang L Q et al. Effect of two-color laser pulse duration on intense terahertz generation at different laser intensities[J]. Physical Review A, 92, 063850(2015).
[109] Jahangiri F, Hashida M, Nagashima T et al. Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses[J]. Applied Physics Letters, 99, 261503(2011).
[110] Jahangiri F, Hashida M, Tokita S et al. Enhancing the energy of terahertz radiation from plasma produced by intense femtosecond laser pulses[J]. Applied Physics Letters, 102, 191106(2013).
[111] Mori K, Hashida M, Nagashima T et al. Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams[J]. Applied Physics Letters, 111, 241107(2017).
[112] Koulouklidis A D, Gollner C, Shumakova V et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments[J]. Nature Communications, 11, 292(2020).
[113] Zhang L L, Wang W M, Wu T et al. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios[J]. Physical Review Letters, 119, 235001(2017).
[114] You Y S, Oh T I, Kim K Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments[J]. Physical Review Letters, 109, 183902(2012).
[115] Sheng Z M, Mima K, Zhang J E et al. Emission of electromagnetic pulses from laser wakefields through linear mode conversion[J]. Physical Review Letters, 94, 095003(2005).
[116] Sheng Z M, Mima K, Zhang J E. Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas[J]. Physics of Plasmas, 12, 123103(2005).
[117] Hu Z D, Sheng Z M, Ding W J et al. Electromagnetic emission from laser wakefields in magnetized underdense plasmas[J]. Plasma Science and Technology, 14, 874-879(2012).
[118] Yoshii J, Lai C H, Katsouleas T et al. Radiation from Cerenkov wakes in a magnetized plasma[J]. Physical Review Letters, 79, 4194-4197(1997).
[119] Yugami N, Higashiguchi T, Gao H et al. Experimental observation of radiation from Cherenkov wakes in a magnetized plasma[J]. Physical Review Letters, 89, 065003(2002).
[120] Wang W M, Gibbon P, Sheng Z M et al. Tunable circularly polarized terahertz radiation from magnetized gas plasma[J]. Physical Review Letters, 114, 253901(2015).
[121] Wu H C, Sheng Z M, Zhang J E. Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator[J]. Physical Review E, 77, 046405(2008).
[122] Wu H C, Meyer-ter-Vehn J, Ruhl H et al. Terahertz radiation from a laser plasma filament[J]. Physical Review E, 83, 036407(2011).
[123] Liu Z J, He X T, Zheng C Y et al. Excitation of coherent terahertz radiation by stimulated Raman scatterings[J]. Physics of Plasmas, 17, 024502(2010).
[124] Singh M, Sharma R P. Generation of THz radiation by laser plasma interaction[J]. Contributions to Plasma Physics, 53, 540-548(2013).
[125] Bakhtiari F, Esmaeilzadeh M, Ghafary B. Terahertz radiation with high power and high efficiency in a magnetized plasma[J]. Physics of Plasmas, 24, 073112(2017).
[126] Esarey E, Sprangle P, Krall J et al. Overview of plasma-based accelerator concepts[J]. IEEE Transactions on Plasma Science, 24, 252-288(1996).
[127] Hamster H, Sullivan A, Gordon S et al. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas[J]. Physical Review E, 49, 671-677(1994).
[128] Chen Z Y, Li X Y, Yu W. Intense terahertz emission from relativistic circularly polarized laser pulses interaction with overdense plasmas[J]. Physics of Plasmas, 20, 103115(2013).
[129] Sagisaka A, Daido H, Nashima S et al. Simultaneous generation of a proton beam and terahertz radiation in high-intensity laser and thin-foil interaction[J]. Applied Physics B, 90, 373-377(2008).
[130] Gao Y A, Drake T, Chen Z Y et al. Half-cycle-pulse terahertz emission from an ultrafast laser plasma in a solid target[J]. Optics Letters, 33, 2776-2778(2008).
[131] Liao G Q, Liu H, Scott G G et al. Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laser-foil interactions[J]. Physical Review X, 10, 031062(2020).
[132] Li C, Zhou M L, Ding W J et al. Effects of laser-plasma interactions on terahertz radiation from solid targets irradiated by ultrashort intense laser pulses[J]. Physical Review E, 84, 036405(2011).
[133] Li Y T, Li C, Zhou M L et al. Strong terahertz radiation from relativistic laser interaction with solid density plasmas[J]. Applied Physics Letters, 100, 254101(2012).
[134] Li C, Cui Y Q, Zhou M L et al. Role of resonance absorption in terahertz radiation generation from solid targets[J]. Optics Express, 22, 11797-11803(2014).
[135] Liao G Q, Li Y T, Li C et al. Terahertz emission from two-plasmon-decay induced transient currents in laser-solid interactions[J]. Physics of Plasmas, 23, 013104(2016).
[136] Li Y T, Yuan X H, Xu M H et al. Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses[J]. Physical Review Letters, 96, 165003(2006).
[137] Ding W J, Sheng Z M. Sub GV/cm terahertz radiation from relativistic laser-solid interactions via coherent transition radiation[J]. Physical Review E, 93, 063204(2016).
[138] Ding W J, Sheng Z M, Koh W S. High-field half-cycle terahertz radiation from relativistic laser interaction with thin solid targets[J]. Applied Physics Letters, 103, 204107(2013).
[139] Woldegeorgis A, Kurihara T, Almassarani M et al. Multi-MV/cm longitudinally polarized terahertz pulses from laser-thin foil interaction[J]. Optica, 5, 1474-1477(2018).
[140] Jin Z, Zhuo H B, Nakazawa T et al. Highly efficient terahertz radiation from a thin foil irradiated by a high-contrast laser pulse[J]. Physical Review E, 94, 033206(2016).
[141] Schroeder C B, Esarey E, van Tilborg J et al. Theory of coherent transition radiation generated at a plasma-vacuum interface[J]. Physical Review E, 69, 016501(2004).
[142] Yang X E, Brunetti E, Jaroszynski D A. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator[J]. New Journal of Physics, 20, 043046(2018).
[143] Fedeli L, Formenti A, Cialfi L et al. Structured targets for advanced laser-driven sources[J]. Plasma Physics and Controlled Fusion, 60, 014013(2018).
[144] Mondal S, Wei Q, Ding W J et al. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses[J]. Scientific Reports, 7, 40058(2017).
[145] Jin Z, Chen Z L, Zhuo H B et al. Tunable radiation source by coupling laser-plasma-generated electrons to a periodic structure[J]. Physical Review Letters, 107, 265003(2011).
[146] Gopal A, Woldegeorgis A H, Herzer S et al. Smith-Purcell radiation in the terahertz regime using charged particle beams from laser-matter interactions[J]. Laser and Particle Beams, 34, 187-191(2016).
[147] Tian Y, Liu J S, Bai Y F et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation[J]. Nature Photonics, 11, 242-246(2017).
[148] Nakajima K. Novel efficient THz undulator using a laser-driven wire[J]. Light: Science & Applications, 6, e17063(2017).
[149] Zhuo H B, Zhang S J, Li X H et al. Terahertz generation from laser-driven ultrafast current propagation along a wire target[J]. Physical Review E, 95, 013201(2017).
[150] Li Z C, Zheng J A. Terahertz radiation from a wire target irradiated by an ultra-intense laser pulse[J]. Physics of Plasmas, 14, 054505(2007).
[151] Tokita S, Sakabe S, Nagashima T et al. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses[J]. Scientific Reports, 5, 8268(2015).
[152] Teramoto K, Tokita S, Terao T et al. Half-cycle terahertz surface waves with MV/cm field strengths generated on metal wires[J]. Applied Physics Letters, 113, 051101(2018).
[153] Jeon T I, Zhang J Q, Grischkowsky D. THz Sommerfeld wave propagation on a single metal wire[J]. Applied Physics Letters, 86, 161904(2005).
[154] Wang L Z, Chen Y P, Zhang G W et al. Tunable high-field terahertz radiation from plasma channels[J]. Laser & Photonics Reviews, 17, 202200627(2023).
[155] Suen J Y, Li W, Taylor Z D et al. Characterization and modeling of a terahertz photoconductive switch[J]. Applied Physics Letters, 96, 141103(2010).
[156] Korte E H, Röseler A. Infrared reststrahlen revisited: commonly disregarded optical details related to n<1[J]. Analytical and Bioanalytical Chemistry, 382, 1987-1992(2005).
[157] Fülöp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources[J]. Advanced Optical Materials, 8, 1900681(2020).
[158] Pearson A J, Palastro J, Antonsen T M. Simulation of terahertz generation in corrugated plasma waveguides[J]. Physical Review E, 83, 056403(2011).
[159] Leitenstorfer A, Moskalenko A S, Kampfrath T et al. The 2023 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 56, 223001(2023).
[160] Dhillon S S, Vitiello M S, Linfield E H et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 50, 043001(2017).
[161] Baierl S, Hohenleutner M, Kampfrath T et al. Nonlinear spin control by terahertz-driven anisotropy fields[J]. Nature Photonics, 10, 715-718(2016).
[162] Nicoletti D, Cavalleri A. Nonlinear light-matter interaction at terahertz frequencies[J]. Advances in Optics and Photonics, 8, 401(2016).
[163] Hebling J, Yeh K L, Hoffmann M C et al. High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 345-353(2008).
[164] Tanaka K, Hirori H, Nagai M. THz nonlinear spectroscopy of solids[J]. IEEE Transactions on Terahertz Science and Technology, 1, 301-312(2011).
[165] Stojanovic N, Drescher M. Accelerator- and laser-based sources of high-field terahertz pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 46, 192001(2013).
[166] Pashkin A, Junginger F, Mayer B et al. Quantum physics with ultrabroadband and intense terahertz pulses[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 8401608(2013).
[167] Hwang H Y, Fleischer S, Brandt N C et al. A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses[J]. Journal of Modern Optics, 62, 1447-1479(2015).
[168] Mittleman D M. Perspective: terahertz science and technology[J]. Journal of Applied Physics, 122, 230901(2017).
[169] Qi T T, Shin Y H, Yeh K L et al. Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields[J]. Physical Review Letters, 102, 247603(2009).
[170] Wienholdt S, Hinzke D, Nowak U. THz switching of antiferromagnets and ferrimagnets[J]. Physical Review Letters, 108, 247207(2012).
[171] Sharma A, Tibai Z, Hebling J. Intense tera-hertz laser driven proton acceleration in plasmas[J]. Physics of Plasmas, 23, 063111(2016).
[172] Pálfalvi L, Fülöp J A, Tóth G et al. Evanescent-wave proton postaccelerator driven by intense THz pulse[J]. Physical Review Special Topics-Accelerators and Beams, 17, 031301(2014).
[173] Olejník K, Seifert T, Kašpar Z et al. Terahertz electrical writing speed in an antiferromagnetic memory[J]. Science Advances, 4, eaar3566(2018).
[174] Schlauderer S, Lange C, Baierl S et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching[J]. Nature, 569, 383-387(2019).
[175] Cartella A, Nova T F, Fechner M et al. Parametric amplification of optical phonons[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 12148-12151(2018).
[176] Nova T F, Cartella A, Cantaluppi A et al. An effective magnetic field from optically driven phonons[J]. Nature Physics, 13, 132-136(2017).
[177] Maehrlein S F, Radu I, Maldonado P et al. Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation[J]. Science Advances, 4, eaar5164(2018).
[178] Nanni E A, Huang W R, Hong K H et al. Terahertz-driven linear electron acceleration[J]. Nature Communications, 6, 8486(2015).
[179] Fausti D, Tobey R I, Dean N et al. Light-induced superconductivity in a stripe-ordered cuprate[J]. Science, 331, 189-191(2011).
[180] Kalashnikov D A, Paterova A V, Kulik S P et al. Infrared spectroscopy with visible light[J]. Nature Photonics, 10, 98-101(2016).
[181] Jiao Y F, Guo S J, Kong D Y et al. Study on terahertz spectrum system of continuous wave frequency domain[J]. Chinese Journal of Lasers, 49, 1914002(2022).
[182] Vicario C, Monoszlai B, Hauri C P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal[J]. Physical Review Letters, 112, 213901(2014).
[183] Luo L, Chatzakis I, Wang J G et al. Broadband terahertz generation from metamaterials[J]. Nature Communications, 5, 3055(2014).
[184] Sell A, Leitenstorfer A, Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm[J]. Optics Letters, 33, 2767-2769(2008).
Get Citation
Copy Citation Text
Jie Cai, Yixing Geng, Jinqing Yu, Xueqing Yan. Analysis of Current Status and Development Trends of Terahertz Radiation Sources Based on Strong Laser Pulses[J]. Chinese Journal of Lasers, 2023, 50(17): 1714009
Category: terahertz technology
Received: May. 4, 2023
Accepted: Jul. 11, 2023
Published Online: Aug. 28, 2023
The Author Email: Jinqing Yu (jinqing.yu@hnu.edu.cn), Xueqing Yan (x.yan@pku.edu.cn)