Chinese Journal of Lasers, Volume. 50, Issue 17, 1714009(2023)

Analysis of Current Status and Development Trends of Terahertz Radiation Sources Based on Strong Laser Pulses

Jie Cai1, Yixing Geng1, Jinqing Yu2、*, and Xueqing Yan1、**
Author Affiliations
  • 1State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
  • 2School of Physics and Electronics, Hunan University, Changsha 410082, Hunan, China
  • show less
    References(184)

    [1] Ulbricht R, Hendry E, Shan J E et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy[J]. Reviews of Modern Physics, 83, 543-586(2011).

    [2] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging: modern techniques and applications[J]. Laser & Photonics Reviews, 5, 124-166(2011).

    [3] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science[J]. Nature Photonics, 11, 16-18(2017).

    [4] Koenig S, Lopez-Diaz D, Antes J et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 7, 977-981(2013).

    [5] Jiang X L, Xu Y. Non-destructive detection of corrosion thickness of steel plate under covering layer by terahertz time domain spectroscopy[J]. Acta Optica Sinica, 42, 1312001(2022).

    [6] Li L, Ge H Y, Jiang Y Y et al. Research progress of terahertz wave in 6G communication network[J]. Laser & Optoelectronics Progress, 59, 1300007(2022).

    [7] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 32, 143-171(2011).

    [8] Choi W J, Cheng G, Huang Z Y et al. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators[J]. Nature Materials, 18, 820-826(2019).

    [9] Bergé L, Kaltenecker K, Engelbrecht S et al. Terahertz spectroscopy from air plasmas created by two-color femtosecond laser pulses: the ALTESSE project[J]. EPL (Europhysics Letters), 126, 24001(2019).

    [10] Basov D N, Averitt R D, van der Marel D et al. Electrodynamics of correlated electron materials[J]. Reviews of Modern Physics, 83, 471-541(2011).

    [11] Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nature Photonics, 7, 680-690(2013).

    [12] Vicario C, Ruchert C, Ardana-Lamas F et al. Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient[J]. Nature Photonics, 7, 720-723(2013).

    [13] Zhao L R, Wang Z, Tang H et al. Terahertz oscilloscope for recording time information of ultrashort electron beams[J]. Physical Review Letters, 122, 144801(2019).

    [14] Hibberd M T, Healy A L, Lake D S et al. Acceleration of relativistic beams using laser-generated terahertz pulses[J]. Nature Photonics, 14, 755-759(2020).

    [15] Hafez H A, Chai X, Ibrahim A et al. Intense terahertz radiation and their applications[J]. Journal of Optics, 18, 093004(2016).

    [16] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [17] Maestrini A, Ward J S, Gill J J et al. A 540-640-GHz high-efficiency four-anode frequency tripler[J]. IEEE Transactions on Microwave Theory and Techniques, 53, 2835-2843(2005).

    [18] Crowe T W, Mattauch R J, Roser H P et al. GaAs Schottky diodes for THz mixing applications[J]. Proceedings of the IEEE, 80, 1827-1841(1992).

    [19] Köhler R, Tredicucci A, Beltram F et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 417, 156-159(2002).

    [20] Faist J, Capasso F, Sivco D L et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).

    [21] Kazarinov R F, Suris R A. Possible amplification of electromagnetic waves in a semiconductor with a superlattice[J]. Soviet Physycs Semiconductors, 5, 707-709(1971).

    [22] Zhao F Y, Li Y Y, Liu J Q et al. Sampled grating terahertz quantum cascade lasers[J]. Applied Physics Letters, 114, 141105(2019).

    [23] Walther C, Fischer M, Scalari G et al. Quantum cascade lasers operating from 1.2 to 1.6 THz[J]. Applied Physics Letters, 91, 131122(2007).

    [24] Bachmann D, Rösch M, Süess M J et al. Short pulse generation and mode control of broadband terahertz quantum cascade lasers[J]. Optica, 3, 1087-1094(2016).

    [25] Wynne K, Carey J J. An integrated description of terahertz generation through optical rectification, charge transfer, and current surge[J]. Optics Communications, 256, 400-413(2005).

    [26] Boyd R W[M]. Nonlinear optics(2020).

    [27] Vodopyanov K L. Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format[J]. Optics Express, 14, 2263-2276(2006).

    [28] Hoffmann M C, Fülöp J A. Intense ultrashort terahertz pulses: generation and applications[J]. Journal of Physics D: Applied Physics, 44, 083001(2011).

    [29] Hebling J, Almasi G, Kozma I et al. Velocity matching by pulse front tilting for large area THz-pulse generation[J]. Optics Express, 10, 1161-1166(2002).

    [30] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting hertzian dipoles[J]. Applied Physics Letters, 45, 284-286(1984).

    [31] You D, Dykaar D R, Jones R R et al. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses[J]. Optics Letters, 18, 290-292(1993).

    [32] Jones R R, You D, Bucksbaum P H. Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses[J]. Physical Review Letters, 70, 1236-1239(1993).

    [33] Ropagnol X, Khorasaninejad M, Raeiszadeh M et al. Intense THz pulses with large ponderomotive potential generated from large aperture photoconductive antennas[J]. Optics Express, 24, 11299-11311(2016).

    [34] Gu J Q, Wang K M, Xu Y et al. Metamaterials-based terahertz photoconductive antennas[J]. Chinese Journal of Lasers, 48, 1914004(2021).

    [35] Seifert T, Jaiswal S, Martens U et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J]. Nature Photonics, 10, 483-488(2016).

    [36] Hibberd M T, Lake D S, Johansson N A B et al. Magnetic-field tailoring of the terahertz polarization emitted from a spintronic source[J]. Applied Physics Letters, 114, 031101(2019).

    [37] Chen X H, Wu X J, Shan S Y et al. Generation and manipulation of chiral broadband terahertz waves from cascade spintronic terahertz emitters[J]. Applied Physics Letters, 115, 221104(2019).

    [38] Sengupta K, Nagatsuma T, Mittleman D M. Terahertz integrated electronic and hybrid electronic-photonic systems[J]. Nature Electronics, 1, 622-635(2018).

    [39] Petrov A Y. Non-reciprocal modulation via acousto-optics[J]. Nature Photonics, 12, 570-571(2018).

    [40] Pálfalvi L, Ollmann Z, Tokodi L et al. Hybrid tilted-pulse-front excitation scheme for efficient generation of high-energy terahertz pulses[J]. Optics Express, 24, 8156-8169(2016).

    [41] Nugraha P S, Krizsán G, Lombosi C et al. Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source[J]. Optics Letters, 44, 1023-1026(2019).

    [42] Pálfalvi L, Tóth G, Tokodi L et al. Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation[J]. Optics Express, 25, 29560-29573(2017).

    [43] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995).

    [44] Bergé L, Skupin S, Nuter R et al. Ultrashort filaments of light in weakly ionized, optically transparent media[J]. Reports on Progress in Physics, 70, 1633-1713(2007).

    [45] Bergé L, Skupin S, Köhler C et al. 3D numerical simulations of THz generation by two-color laser filaments[J]. Physical Review Letters, 110, 073901(2013).

    [46] D’Amico C, Houard A, Franco M et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air[J]. Physical Review Letters, 98, 235002(2007).

    [47] Daigle J F, Théberge F, Henriksson M et al. Remote THz generation from two-color filamentation: long distance dependence[J]. Optics Express, 20, 6825-6834(2012).

    [48] Clerici M, Peccianti M, Schmidt B E et al. Wavelength scaling of terahertz generation by gas ionization[J]. Physical Review Letters, 110, 253901(2013).

    [49] Wang T J, Yuan S A, Chen Y P et al. Toward remote high energy terahertz generation[J]. Applied Physics Letters, 97, 111108(2010).

    [50] de Alaiza Martínez P G, Babushkin I, Bergé L et al. Boosting terahertz generation in laser-field ionized gases using a sawtooth wave shape[J]. Physical Review Letters, 114, 183901(2015).

    [51] Löffler T, Jacob F, Roskos H G. Generation of terahertz pulses by photoionization of electrically biased air[J]. Applied Physics Letters, 77, 453-455(2000).

    [52] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air[J]. Optics Letters, 25, 1210-1212(2000).

    [53] Kress M, Löffler T, Eden S et al. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves[J]. Optics Letters, 29, 1120-1122(2004).

    [54] Kim K Y, Taylor A J, Glownia J H et al. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nature Photonics, 2, 605-609(2008).

    [55] Kim K Y, Glownia J H, Taylor A J et al. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields[J]. Optics Express, 15, 4577-4584(2007).

    [56] Roskos H G, Thomson M D, Kreß M et al. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications[J]. Laser & Photonics Review, 1, 349-368(2007).

    [57] Babushkin I, Skupin S, Husakou A et al. Tailoring terahertz radiation by controlling tunnel photoionization events in gases[J]. New Journal of Physics, 13, 123029(2011).

    [58] Keldysh L. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JETP, 20, 1307-1314(1965).

    [59] Perelomov A, Popov V S, Terentev M. Ionization of atoms in an alternating electric field[J]. Soviet Physics JETP, 23, 924-934(1966).

    [60] Nguyen A, González de Alaiza Martínez P, Déchard J et al. Spectral dynamics of THz pulses generated by two-color laser filaments in air: the role of Kerr nonlinearities and pump wavelength[J]. Optics Express, 25, 4720-4740(2017).

    [61] Babushkin I, Kuehn W, Köhler C et al. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases[J]. Physical Review Letters, 105, 053903(2010).

    [62] Debayle A, Gremillet L, Bergé L et al. Analytical model for THz emissions induced by laser-gas interaction[J]. Optics Express, 22, 13691-13709(2014).

    [63] Amico C D, Houard A, Akturk S et al. Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment[J]. New Journal of Physics, 10, 013015(2008).

    [64] Sprangle P, Peñano J R, Hafizi B et al. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces[J]. Physical Review E, 69, 066415(2004).

    [65] Thiele I, Nuter R, Bousquet B et al. Theory of terahertz emission from femtosecond-laser-induced microplasmas[J]. Physical Review E, 94, 063202(2016).

    [66] Davoine X, Debayle A et al. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: competition between photoionization and Wakefield effects[J]. Scientific Reports, 6, 26743(2016).

    [67] Thiele I, Zhou B, Nguyen A et al. Terahertz emission from laser-driven gas plasmas: a plasmonic point of view[J]. Optica, 5, 1617-1622(2018).

    [68] Hamster H, Sullivan A, Gordon S et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. Physical Review Letters, 71, 2725-2728(1993).

    [69] Liao G Q, Li Y T, Liu H et al. Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 3994-3999(2019).

    [70] Liao G Q, Li Y T, Li C et al. Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses[J]. Physical Review Letters, 114, 255001(2015).

    [71] Gopal A, Herzer S, Schmidt A et al. Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator[J]. Physical Review Letters, 111, 074802(2013).

    [72] Li C, Liao G Q, Zhou M L et al. Backward terahertz radiation from intense laser-solid interactions[J]. Optics Express, 24, 4010-4021(2016).

    [73] Leemans W P, Geddes C G R, Faure J et al. Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary[J]. Physical Review Letters, 91, 074802(2003).

    [74] Liao G Q, Li Y T, Zhang Y H et al. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions[J]. Physical Review Letters, 116, 205003(2016).

    [75] Déchard J, Debayle A, Davoine X et al. Terahertz pulse generation in underdense relativistic plasmas: from photoionization-induced radiation to coherent transition radiation[J]. Physical Review Letters, 120, 144801(2018).

    [76] Freidberg J P, Mitchell R W, Morse R L et al. Resonant absorption of laser light by plasma targets[J]. Physical Review Letters, 28, 795-799(1972).

    [77] Kuratov A S, Brantov A V, Aliev Y M et al. Terahertz radiation in laser-induced charge separation in the irradiated plasma target[J]. Quantum Electronics, 46, 1023-1030(2016).

    [78] Herzer S, Woldegeorgis A, Polz J et al. An investigation on THz yield from laser-produced solid density plasmas at relativistic laser intensities[J]. New Journal of Physics, 20, 063019(2018).

    [79] Garibian G. Contribution to the theory of transition radiation[J]. Soviet Physics JETP, 6, 1079(1958).

    [80] Wu Z R, Fisher A S, Goodfellow J et al. Intense terahertz pulses from SLAC electron beams using coherent transition radiation[J]. Review of Scientific Instruments, 84, 022701(2013).

    [81] Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction[J]. Reviews of Modern Physics, 85, 751-793(2013).

    [82] Mora P. Plasma expansion into a vacuum[J]. Physical Review Letters, 90, 185002(2003).

    [83] Kahaly S, Yadav S K, Wang W M et al. Near-complete absorption of intense, ultrashort laser light by sub-λ gratings[J]. Physical Review Letters, 101, 145001(2008).

    [84] Kulcsár G, Al Mawlawi D, Budnik F W et al. Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets[J]. Physical Review Letters, 84, 5149-5152(2000).

    [85] Fedeli L, Sgattoni A, Cantono G et al. Relativistic surface plasmon enhanced harmonic generation from gratings[J]. Applied Physics Letters, 110, 051103(2017).

    [86] Ceccotti T, Floquet V, Sgattoni A et al. Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets[J]. Physical Review Letters, 111, 185001(2013).

    [87] Smith S J, Purcell E M. Visible light from localized surface charges moving across a grating[J]. Physical Review, 92, 1069(1953).

    [88] Kodama R, Sentoku Y, Chen Z L et al. Plasma devices to guide and collimate a high density of MeV electrons[J]. Nature, 432, 1005-1008(2004).

    [89] Wang K L, Mittleman D M. Metal wires for terahertz wave guiding[J]. Nature, 432, 376-379(2004).

    [90] Yang K H, Richards P L, Shen Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3[J]. Applied Physics Letters, 19, 320-323(1971).

    [91] Auston D H, Cheung K P, Valdmanis J A et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media[J]. Physical Review Letters, 53, 1555-1558(1984).

    [92] Blanchard F, Razzari L, Bandulet H C et al. Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal[J]. Optics Express, 15, 13212-13220(2007).

    [93] Löffler T, Hahn T, Thomson M et al. Large-area electro-optic ZnTe terahertz emitters[J]. Optics Express, 13, 5353-5362(2005).

    [94] Jang D, Sung J H, Lee S K et al. Generation of 0.7 mJ multicycle 15 THz radiation by phase-matched optical rectification in lithium niobate[J]. Optics Letters, 45, 3617-3620(2020).

    [95] Wu X J, Ren Z J, Kong D Y et al. Lithium niobate strong-field terahertz source and its applications[J]. Chinese Journal of Lasers, 49, 1914001(2022).

    [96] Hebling J, Stepanov A G, Almási G et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts[J]. Applied Physics B, 78, 593-599(2004).

    [97] Blanchard F, Ropagnol X, Hafez H et al. Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimillijoule pump energies[J]. Optics Letters, 39, 4333-4336(2014).

    [98] Huang S W, Granados E, Huang W R et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate[J]. Optics Letters, 38, 796-798(2013).

    [99] Zhang X C, Ma X F, Jin Y et al. Terahertz optical rectification from a nonlinear organic crystal[J]. Applied Physics Letters, 61, 3080-3082(1992).

    [100] Hauri C P, Ruchert C, Vicario C et al. Strong-field single-cycle THz pulses generated in an organic crystal[J]. Applied Physics Letters, 99, 161116(2011).

    [101] Vicario C, Ovchinnikov A V, Ashitkov S I et al. Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser[J]. Optics Letters, 39, 6632-6635(2014).

    [102] Wu X J, Carbajo S, Ravi K et al. Terahertz generation in lithium niobate driven by Ti∶sapphire laser pulses and its limitations[J]. Optics Letters, 39, 5403-5406(2014).

    [103] Shen Y C, Upadhya P C, Linfield E H et al. Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters[J]. Applied Physics Letters, 83, 3117-3119(2003).

    [104] Hale P J, Madeo J, Chin C et al. 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas[J]. Optics Express, 22, 26358-26364(2014).

    [105] Yardimci N T, Yang S H, Berry C W et al. High-power terahertz generation using large-area plasmonic photoconductive emitters[J]. IEEE Transactions on Terahertz Science and Technology, 5, 223-229(2015).

    [106] Andreeva V A, Kosareva O G, Panov N A et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma[J]. Physical Review Letters, 116, 063902(2016).

    [107] Yu Fedorov V, Koulouklidis A D, Tzortzakis S. THz generation by two-color femtosecond filaments with complex polarization states: four-wave mixing versus photocurrent contributions[J]. Plasma Physics and Controlled Fusion, 59, 014025(2017).

    [108] Lu C H, He T, Zhang L Q et al. Effect of two-color laser pulse duration on intense terahertz generation at different laser intensities[J]. Physical Review A, 92, 063850(2015).

    [109] Jahangiri F, Hashida M, Nagashima T et al. Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses[J]. Applied Physics Letters, 99, 261503(2011).

    [110] Jahangiri F, Hashida M, Tokita S et al. Enhancing the energy of terahertz radiation from plasma produced by intense femtosecond laser pulses[J]. Applied Physics Letters, 102, 191106(2013).

    [111] Mori K, Hashida M, Nagashima T et al. Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams[J]. Applied Physics Letters, 111, 241107(2017).

    [112] Koulouklidis A D, Gollner C, Shumakova V et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments[J]. Nature Communications, 11, 292(2020).

    [113] Zhang L L, Wang W M, Wu T et al. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios[J]. Physical Review Letters, 119, 235001(2017).

    [114] You Y S, Oh T I, Kim K Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments[J]. Physical Review Letters, 109, 183902(2012).

    [115] Sheng Z M, Mima K, Zhang J E et al. Emission of electromagnetic pulses from laser wakefields through linear mode conversion[J]. Physical Review Letters, 94, 095003(2005).

    [116] Sheng Z M, Mima K, Zhang J E. Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas[J]. Physics of Plasmas, 12, 123103(2005).

    [117] Hu Z D, Sheng Z M, Ding W J et al. Electromagnetic emission from laser wakefields in magnetized underdense plasmas[J]. Plasma Science and Technology, 14, 874-879(2012).

    [118] Yoshii J, Lai C H, Katsouleas T et al. Radiation from Cerenkov wakes in a magnetized plasma[J]. Physical Review Letters, 79, 4194-4197(1997).

    [119] Yugami N, Higashiguchi T, Gao H et al. Experimental observation of radiation from Cherenkov wakes in a magnetized plasma[J]. Physical Review Letters, 89, 065003(2002).

    [120] Wang W M, Gibbon P, Sheng Z M et al. Tunable circularly polarized terahertz radiation from magnetized gas plasma[J]. Physical Review Letters, 114, 253901(2015).

    [121] Wu H C, Sheng Z M, Zhang J E. Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator[J]. Physical Review E, 77, 046405(2008).

    [122] Wu H C, Meyer-ter-Vehn J, Ruhl H et al. Terahertz radiation from a laser plasma filament[J]. Physical Review E, 83, 036407(2011).

    [123] Liu Z J, He X T, Zheng C Y et al. Excitation of coherent terahertz radiation by stimulated Raman scatterings[J]. Physics of Plasmas, 17, 024502(2010).

    [124] Singh M, Sharma R P. Generation of THz radiation by laser plasma interaction[J]. Contributions to Plasma Physics, 53, 540-548(2013).

    [125] Bakhtiari F, Esmaeilzadeh M, Ghafary B. Terahertz radiation with high power and high efficiency in a magnetized plasma[J]. Physics of Plasmas, 24, 073112(2017).

    [126] Esarey E, Sprangle P, Krall J et al. Overview of plasma-based accelerator concepts[J]. IEEE Transactions on Plasma Science, 24, 252-288(1996).

    [127] Hamster H, Sullivan A, Gordon S et al. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas[J]. Physical Review E, 49, 671-677(1994).

    [128] Chen Z Y, Li X Y, Yu W. Intense terahertz emission from relativistic circularly polarized laser pulses interaction with overdense plasmas[J]. Physics of Plasmas, 20, 103115(2013).

    [129] Sagisaka A, Daido H, Nashima S et al. Simultaneous generation of a proton beam and terahertz radiation in high-intensity laser and thin-foil interaction[J]. Applied Physics B, 90, 373-377(2008).

    [130] Gao Y A, Drake T, Chen Z Y et al. Half-cycle-pulse terahertz emission from an ultrafast laser plasma in a solid target[J]. Optics Letters, 33, 2776-2778(2008).

    [131] Liao G Q, Liu H, Scott G G et al. Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laser-foil interactions[J]. Physical Review X, 10, 031062(2020).

    [132] Li C, Zhou M L, Ding W J et al. Effects of laser-plasma interactions on terahertz radiation from solid targets irradiated by ultrashort intense laser pulses[J]. Physical Review E, 84, 036405(2011).

    [133] Li Y T, Li C, Zhou M L et al. Strong terahertz radiation from relativistic laser interaction with solid density plasmas[J]. Applied Physics Letters, 100, 254101(2012).

    [134] Li C, Cui Y Q, Zhou M L et al. Role of resonance absorption in terahertz radiation generation from solid targets[J]. Optics Express, 22, 11797-11803(2014).

    [135] Liao G Q, Li Y T, Li C et al. Terahertz emission from two-plasmon-decay induced transient currents in laser-solid interactions[J]. Physics of Plasmas, 23, 013104(2016).

    [136] Li Y T, Yuan X H, Xu M H et al. Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses[J]. Physical Review Letters, 96, 165003(2006).

    [137] Ding W J, Sheng Z M. Sub GV/cm terahertz radiation from relativistic laser-solid interactions via coherent transition radiation[J]. Physical Review E, 93, 063204(2016).

    [138] Ding W J, Sheng Z M, Koh W S. High-field half-cycle terahertz radiation from relativistic laser interaction with thin solid targets[J]. Applied Physics Letters, 103, 204107(2013).

    [139] Woldegeorgis A, Kurihara T, Almassarani M et al. Multi-MV/cm longitudinally polarized terahertz pulses from laser-thin foil interaction[J]. Optica, 5, 1474-1477(2018).

    [140] Jin Z, Zhuo H B, Nakazawa T et al. Highly efficient terahertz radiation from a thin foil irradiated by a high-contrast laser pulse[J]. Physical Review E, 94, 033206(2016).

    [141] Schroeder C B, Esarey E, van Tilborg J et al. Theory of coherent transition radiation generated at a plasma-vacuum interface[J]. Physical Review E, 69, 016501(2004).

    [142] Yang X E, Brunetti E, Jaroszynski D A. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator[J]. New Journal of Physics, 20, 043046(2018).

    [143] Fedeli L, Formenti A, Cialfi L et al. Structured targets for advanced laser-driven sources[J]. Plasma Physics and Controlled Fusion, 60, 014013(2018).

    [144] Mondal S, Wei Q, Ding W J et al. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses[J]. Scientific Reports, 7, 40058(2017).

    [145] Jin Z, Chen Z L, Zhuo H B et al. Tunable radiation source by coupling laser-plasma-generated electrons to a periodic structure[J]. Physical Review Letters, 107, 265003(2011).

    [146] Gopal A, Woldegeorgis A H, Herzer S et al. Smith-Purcell radiation in the terahertz regime using charged particle beams from laser-matter interactions[J]. Laser and Particle Beams, 34, 187-191(2016).

    [147] Tian Y, Liu J S, Bai Y F et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation[J]. Nature Photonics, 11, 242-246(2017).

    [148] Nakajima K. Novel efficient THz undulator using a laser-driven wire[J]. Light: Science & Applications, 6, e17063(2017).

    [149] Zhuo H B, Zhang S J, Li X H et al. Terahertz generation from laser-driven ultrafast current propagation along a wire target[J]. Physical Review E, 95, 013201(2017).

    [150] Li Z C, Zheng J A. Terahertz radiation from a wire target irradiated by an ultra-intense laser pulse[J]. Physics of Plasmas, 14, 054505(2007).

    [151] Tokita S, Sakabe S, Nagashima T et al. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses[J]. Scientific Reports, 5, 8268(2015).

    [152] Teramoto K, Tokita S, Terao T et al. Half-cycle terahertz surface waves with MV/cm field strengths generated on metal wires[J]. Applied Physics Letters, 113, 051101(2018).

    [153] Jeon T I, Zhang J Q, Grischkowsky D. THz Sommerfeld wave propagation on a single metal wire[J]. Applied Physics Letters, 86, 161904(2005).

    [154] Wang L Z, Chen Y P, Zhang G W et al. Tunable high-field terahertz radiation from plasma channels[J]. Laser & Photonics Reviews, 17, 202200627(2023).

    [155] Suen J Y, Li W, Taylor Z D et al. Characterization and modeling of a terahertz photoconductive switch[J]. Applied Physics Letters, 96, 141103(2010).

    [156] Korte E H, Röseler A. Infrared reststrahlen revisited: commonly disregarded optical details related to n<1[J]. Analytical and Bioanalytical Chemistry, 382, 1987-1992(2005).

    [157] Fülöp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources[J]. Advanced Optical Materials, 8, 1900681(2020).

    [158] Pearson A J, Palastro J, Antonsen T M. Simulation of terahertz generation in corrugated plasma waveguides[J]. Physical Review E, 83, 056403(2011).

    [159] Leitenstorfer A, Moskalenko A S, Kampfrath T et al. The 2023 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 56, 223001(2023).

    [160] Dhillon S S, Vitiello M S, Linfield E H et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 50, 043001(2017).

    [161] Baierl S, Hohenleutner M, Kampfrath T et al. Nonlinear spin control by terahertz-driven anisotropy fields[J]. Nature Photonics, 10, 715-718(2016).

    [162] Nicoletti D, Cavalleri A. Nonlinear light-matter interaction at terahertz frequencies[J]. Advances in Optics and Photonics, 8, 401(2016).

    [163] Hebling J, Yeh K L, Hoffmann M C et al. High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 345-353(2008).

    [164] Tanaka K, Hirori H, Nagai M. THz nonlinear spectroscopy of solids[J]. IEEE Transactions on Terahertz Science and Technology, 1, 301-312(2011).

    [165] Stojanovic N, Drescher M. Accelerator- and laser-based sources of high-field terahertz pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 46, 192001(2013).

    [166] Pashkin A, Junginger F, Mayer B et al. Quantum physics with ultrabroadband and intense terahertz pulses[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 8401608(2013).

    [167] Hwang H Y, Fleischer S, Brandt N C et al. A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses[J]. Journal of Modern Optics, 62, 1447-1479(2015).

    [168] Mittleman D M. Perspective: terahertz science and technology[J]. Journal of Applied Physics, 122, 230901(2017).

    [169] Qi T T, Shin Y H, Yeh K L et al. Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields[J]. Physical Review Letters, 102, 247603(2009).

    [170] Wienholdt S, Hinzke D, Nowak U. THz switching of antiferromagnets and ferrimagnets[J]. Physical Review Letters, 108, 247207(2012).

    [171] Sharma A, Tibai Z, Hebling J. Intense tera-hertz laser driven proton acceleration in plasmas[J]. Physics of Plasmas, 23, 063111(2016).

    [172] Pálfalvi L, Fülöp J A, Tóth G et al. Evanescent-wave proton postaccelerator driven by intense THz pulse[J]. Physical Review Special Topics-Accelerators and Beams, 17, 031301(2014).

    [173] Olejník K, Seifert T, Kašpar Z et al. Terahertz electrical writing speed in an antiferromagnetic memory[J]. Science Advances, 4, eaar3566(2018).

    [174] Schlauderer S, Lange C, Baierl S et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching[J]. Nature, 569, 383-387(2019).

    [175] Cartella A, Nova T F, Fechner M et al. Parametric amplification of optical phonons[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 12148-12151(2018).

    [176] Nova T F, Cartella A, Cantaluppi A et al. An effective magnetic field from optically driven phonons[J]. Nature Physics, 13, 132-136(2017).

    [177] Maehrlein S F, Radu I, Maldonado P et al. Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation[J]. Science Advances, 4, eaar5164(2018).

    [178] Nanni E A, Huang W R, Hong K H et al. Terahertz-driven linear electron acceleration[J]. Nature Communications, 6, 8486(2015).

    [179] Fausti D, Tobey R I, Dean N et al. Light-induced superconductivity in a stripe-ordered cuprate[J]. Science, 331, 189-191(2011).

    [180] Kalashnikov D A, Paterova A V, Kulik S P et al. Infrared spectroscopy with visible light[J]. Nature Photonics, 10, 98-101(2016).

    [181] Jiao Y F, Guo S J, Kong D Y et al. Study on terahertz spectrum system of continuous wave frequency domain[J]. Chinese Journal of Lasers, 49, 1914002(2022).

    [182] Vicario C, Monoszlai B, Hauri C P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal[J]. Physical Review Letters, 112, 213901(2014).

    [183] Luo L, Chatzakis I, Wang J G et al. Broadband terahertz generation from metamaterials[J]. Nature Communications, 5, 3055(2014).

    [184] Sell A, Leitenstorfer A, Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm[J]. Optics Letters, 33, 2767-2769(2008).

    Tools

    Get Citation

    Copy Citation Text

    Jie Cai, Yixing Geng, Jinqing Yu, Xueqing Yan. Analysis of Current Status and Development Trends of Terahertz Radiation Sources Based on Strong Laser Pulses[J]. Chinese Journal of Lasers, 2023, 50(17): 1714009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: May. 4, 2023

    Accepted: Jul. 11, 2023

    Published Online: Aug. 28, 2023

    The Author Email: Jinqing Yu (jinqing.yu@hnu.edu.cn), Xueqing Yan (x.yan@pku.edu.cn)

    DOI:10.3788/CJL230781

    Topics